The effect of carbon source on the biomass and exopolysaccharide synthesis by Paenibacillus mucilaginosus bacteria
https://doi.org/10.21285/2227-2925-2019-9-3-509-518
Abstract
About the Authors
D. T. HaRussian Federation
Postgraduate Student, Department of Food Biotechnology,
Kazan
Z. A. Kanarskaya
Russian Federation
Ph.D. (Engineering), Associate Professor, Department of Food Biotechnology,
Kazan
A. V. Kanarsky
Russian Federation
Dr. Sci. (Engineering), Professor,
Kazan
A. V. Shcherbakov
Russian Federation
Ph.D. (Biology), Researcher, Laboratory of Microbial Technology,
Saint-Petersburg
E. N. Shcherbakova
Russian Federation
Ph.D. (Agriculture), Junior Researcher, Laboratory of Microbial Technology,
Saint-Petersburg
References
1. Ahmad F., Ahmad I., Khan M.S. Screening of free-living Rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research. 2008, vol. 163, issue 2, pp. 173–181. DOI: 10.1016/j.micres.2006.04.001
2. Ash C., Priest F.G., Collins M.D. Molecular iden tification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek. 1993, vol. 64, issue 3–4, pp. 253–260.
3. Goswami D.,Parmar S., Vaghela H., Dhandhukia P., Thakker J.N. Describing Paenibacillus mucilagenosus strain N3 as an efficient plant growth promoting rhizobacteria (PGPR). Cogent Food & Agriculture. 2015, vol. 1, issue 1. DOI: 10.1080/23311932.2014.1000714
4. Aleksandrov V., Blagodyr R., Ilev I. Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiol Zh. (Kiev). 1997, vol. 29, pp.111–114.
5. Liu W., Xu X., Wu X., Yang Q., Luo Y., Christie P. Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environmental Geochemistry and Health. 2006, vol. 28, no. 1-2, pp. 133–140. DOI: 10.1007/s10653-005-9022-0
6. Basak B.B., Biswas D.R. Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant and Soil. 2008, vol. 317, issue 1–2, pp. 235–255.
7. Sheng X.F., Huang W.Y., Yin Y.X. Effects of application of silicate bacteria fertilizer and its potassium release. Journal of Nanjing Agricultural University. 2003, vol. 23, pp. 43–46. (In Chinese).
8. Glukhova A.A., Kritskaya R.A., Lobodyuk V.D., Nikitina M.B., Chekasina E.V. Shtamm bakterii Bacillus mucilaginosus dlya polucheniya udobreniya i ekzopolimera [The strain of bacteria Bacillus mucilaginosus to obtain fertilizer and exopolymer]. Patent of RF, no. 2081867, 1997.
9. Plastinin S.A., Nikulshin V.A., Zdornov A.V. Shtamm bakterii Bacillus mucilaginosus Bac 1208, obladayushchii povyshennymi fosfor i kalii mobilizuyushchimi svoistvami i udobrenie na ego osnove [The bacterial strain Bacillus mucilaginosus Bac 1208, which has enhanced phosphorus and potassium mobilizing properties and fertilizer based on it]. Patent of RF, no. 2408722, 2011.
10. Chebotar' V.K., Kazakov A.E., Erofeev S.V. Sposob polucheniya bioudobrenii [The method for obtaining bio-fertilizers]. Patent of RF, no. 2241692, 2002.
11. Plastinin S.A., Zdornov A.V., Nikulshin V.A. The strain of bacteria Paenibacillus mucilaginosus, a method of stimulating the growth and protection of plants from diseases and the use of the strain of bacteria Paenibacillus mucilaginosus as a fertilizer and agent of biological control (anti-pathogenic agent) in the prevention and / or treatment of plant diseases. Certificate of authorship RF, no. 1756318, 2017.
12. Lu J.-J, Xue A.-Q., Cao Z.-Y., Yang S.-J., Hu X.-F. Diversity of plant growth-promoting Paenibacillus mucilaginosus isolated from vegetable fields in Zhejiang, China. Annals of Microbiology. 2014, vol. 64, issue 4, pp. 1745–1756. DOI: 10.1007/s13213-014-0818-y
13. Tauson E.L., Kuz'mina L.A., Pavlova L.A., Vinogradov E.Ya., Voronkov M.G., Mirskova A.N. Optimization of the composition of the nutrient medium for growing Bacillus mucilaginosus. Izvestiya Sibirskogo otdeleniya Akademii nauk SSSR. Seriya biologicheskikh nauk. 1988, no. 20, issue 3, pp. 74–79.
14. Wang X., Yuan X.F., Zhao B., et al. Optimization of Culture Medium for Growth of B. mucilaginosus PM13 Strain. The Chinese Journal of Process Engineering. 2010, vol. 10, issue 3, pp. 582–587. (In Chinese)
15. Nyanikova G.G., Vinogradov E.Ya. Areas for possible application of the Bacillus mucilaginosus culture. Aktual'nye voprosy himicheskoj nauki i tehnologii, jekologii v himicheskoj promyshlennosti. 1995, issue 3, 18 p. (In Russian)
16. Yuksekdag Z.N., Aslim B. Influence of different carbon sources on exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus (B3, G12) and Streptococcus thermophilus (W22). Brazilian Archives of Biology and Technology. 2008, vol. 51, issue 3, pp. 581–585. DOI: 10.1590/S1516-89132008 000300019
17. Maier R.M. Bacterial Growth. In: Environmental Microbiology. Second Edition. Ed. by R.M. Maier, I.L. Pepper, C.P. Gerba Academic Press of Elsevier, 2009, pp. 38–56.
18. Morozova Yu.A., Skvortsov E.V., Alimova F.K., Kanarskii A.V. The biosynthesis of xylanases and cellulases by Trichoderma fungi on the post-alcohol bard. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2012, vol. 15, no. 19, pp. 120–122. (In Russian)
19. Fuhrer T., Fischer E., and Sauer U. Experimental Identification and Quantification of Glucose Metabolism in Seven Bacterial Species. Journal of Bacteriology. 2005, vol. 187, issue 5, pp. 1581–1590. DOI: 10.1128/JB.187.5.1581-1590.2005
20. Kuis L.V, Markevich R.M. Acid accumulation in Bacillus cultural liquid. Trudy Belorusskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya 4. Khimiya i tekhnologiya organicheskikh veshchestv. 2008, vol. 1, no. 4, pp. 195–198. (In Russian)
Review
For citations:
Ha D.T., Kanarskaya Z.A., Kanarsky A.V., Shcherbakov A.V., Shcherbakova E.N. The effect of carbon source on the biomass and exopolysaccharide synthesis by Paenibacillus mucilaginosus bacteria. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(3):509-518. (In Russ.) https://doi.org/10.21285/2227-2925-2019-9-3-509-518