Chiral complexes of transition metals with chelating nitrogen ligands in asymmetric hydrogenation with hydrogen transfer
https://doi.org/10.21285/2227-2925-2019-9-4-621-634
Abstract
The reaction of catalytic hydrogenation involving hydrogen transfer through unsaturated C = C and C = O bonds in organic compounds in the presence of optically active soluble complexes of transition metals with nitrogen-containing multidentate ligands has recently gained increased popularity. This review is aimed at generalising available information on the most effective and promising metal complex catalysts for asymmetric hydrogenation involving hydrogen transfer, which have been proposed in the past 10–15 years. Since the activity and selectivity of catalysts based on transition metal complexes are largely dependent on their composition and structure, the design of ligands, the presence or absence of stereogenic centres, the stability and configuration of the chelating ligand system, the nature of the dentate atoms present therein are extremely important. Researchers worldwide have been largely focused on the synthesis and use such ligands, as optically active diamines and aminoalcohols with sp3 -hybridized dentate atoms. These compositions are not oxidized in the coordination sphere of transition metals compared to phosphine ligands, at the same time as maintaining a high level of stereogenicity. Optically active ligands with sp2 nitrogen atoms containing the C = N azomethine bond and oxazoline fragments have been considered as a separate group. In complexes with transition metals, these ligands exhibit a high stability in the catalytic hydrogenation reaction with hydrogen transfer. The stereoselectivity of catalysts in some cases increases with an increase in the denticity of nitrogen-containing ligands. Among them are N-heterocyclic N, H, C–ligands in the Rh (III) complexes; Ru (II) complexes with tridentate N, N, N–ligands with chiral oxazoline fragments; C, N, N–ruthenium complexes. In this review, we grouped catalysts by ligand denticity (from 2 to 6). Comparative data on the activity of various catalysts and the stereoselectivity of respective reactions is provided. The effect of the structure of chiral ligands on the catalytic characteristics of metal complexes is discussed.
The authors declare no conflict of interests regarding the publication of this article.
About the Authors
N. M. BadyrovaRussian Federation
Nataliya M. Badyrova, Cand. Sci. (Chemistry), Associate Professor
83, Lermontov St., Irkutsk 664074
L. O. Nindakova
Russian Federation
Lidiya O. Nindakova, Dr. Sci. (Chemistry), Senior Researcher, Professor
83, Lermontov St., Irkutsk 664074
References
1. Ito J-I, Nishiyama H. Recent topics of transfer hydrogenation. Tetrahedron Lett. 2014;55:3133–3146. https://doi.org/10.1016/j.tetlet.2014.03.140
2. Wang D, Astruc D. The Golden Age of Transfer Hydrogenation. Chemical Reviews. 2015;115: 6621–6686. https://doi.org/10.1021/acs.chemrev.5b00203
3. Václavík J, Šot P, Vilhanová B, Pecháček J, Kuzma M, Kačer P. Practical Aspects and Mechanism of Asymmetric Hydrogenation with Chiral Half-Sandwich Complexes. Molecules. 2013;18(6): 6804–6828. https://doi.org/10.3390/molecules18066804
4. Foubelo F, Nájera C, Yus M. Catalytic asymmetric transfer hydrogenation of ketones: recent advances. Tetrahedron: Asymmetry. 2015;26(15-16): 769–790, https://doi.org/10.1016/j.tetasy.2015.06.016
5. Noyori R. Asymmetrische Katalyse: Kenntnisstand und Perspektiven (Nobel-Vortrag). Angewandte Chemie. 2002;114(12):2108–2123. https://doi.org/10.1002/1521-3757(20020617)114:123.0.CO;2-Z
6. Knowles WS. Asymmetrische Hydrierungen (Nobel-Vortrag). Angewandte Chemie. 2002;114(12): 2096–2107. https://doi.org/10.1002/1521-3757(20020617)114:123.0.CO;2-Z
7. Mashima K, Abe T, Tani K. Asymmetric Transfer Hydrogenation of Ketonic Substrates Catalyzed by (η 5 -C5Me5)MCl Complexes (M = Rh and Ir) of (1S,2S)- N-(p-Toluenesulfonyl)-1,2-diphenylethylenediamine. Chemistry Letters. 1998;27(12):1199–1200. https://doi.org/10.1246/cl.1998.1199
8. Ikariya T, Murata K, Noyori R. Bifunctional transition metal-based molecular catalysts for asymmetric synthesis. Organic and Biomolecular Chemistry. 2006;4(3):393–406. https://doi.org/10.1039/B513564H
9. Ikariya T, Blacker AJ. Asymmetric Transfer Hydrogenation of Ketones with Bifunctional Transition Metal-Based Molecular Catalysts. Accounts of Chemical Research. 2007;40(12): 1300–1308. https://doi.org/10.1021/ar700134q
10. Akutagawa S. Asymmetric synthesis by metal BINAP catalyists. Applied Catalysis A: General. 1995;128(2):171–207. https://doi.org/10.1016/0926-860X(95)00097-6
11. Blaser H, Schmidt E. Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions. Weinheim: Viley-VCH Verlag GmbH&Co, KGaA, 2004, 454 p. https://doi.org/10.1002/9783527630639
12. Murphy SK, Dong VM. Enantioselective Ketone Hydroacylation Using Noyori’s transfer Hydrogenation Catalyst. Journal of the American Chemical Society. 2013;135(15):5553–5556. https://doi.org/10.1021/ja4021974
13. Ito M, Hirakawa M, Murata K, Ikariya T. Hydrogenation of Aromatic Ketones Catalyzed by (η 5 - C5(CH3)5)Ru Complexes Bearing Primary Amines. Organometallics. 2001;20(3):379–381. https://doi.org/10.1021/om000912+
14. Wang T, Zhuo L-G, Li Z, Chen F, Ding Z, He Y, et al. Highly Enantioselective Hydrogenation of Quinolines Using Phosphine-Free Chiral Cationic Ruthenium Catalysts: Scope, Mechanism, and Origin of Enantioselectivity. Journal of the American Chemical Society. 2011;133(25):9878–9891. https://doi.org/10.1021/ja2023042
15. Wu XF, Vinci D, Ikariya T, Xiao J. A remarkably effective catalyst for the asymmetric transfer hydrogenation of aromatic ketones in water and air. Chemical Communication. 2005;35:4447–4449. http://doi.org/10.1039/B507276J
16. Malacea R, Poli R, Manoury E. Asymmetric hydrosilylation, transfer hydrogenation and hydrogenation of ketones catalyzed by iridium complexes. Coordination Chemistry Reviews. 2010;254(5-6): 729–752. https://doi.org/10.1016/j.ccr.2009.09.033
17. Takehara J, Hashiguchi S, Fujii A, Inoue S, Ikariya T, Noyori R. Amino alcohol effects on the ruthenium(II)-catalysed asymmetric transfer hydrogenation of ketones on propan-2-ol. Chemical Communication. 1996;2:233–234. http://dx.doi.org/10.10 39/CC9960000233
18. Hamada T, Torii T, Onishi T, Izawa K, Ikariya T. A Practical Synthesis of Optically Active Aromatic Epoxides via Asymmetric Transfer Hydrogenation α-Chlorinated Ketones with Chiral RhodiumDiamine Catalyst. Tetrahedron. 2004;60(34):7411– 7417. https://doi.org/10.1016/j.tet.2004.06.076
19. Liu Q, Wang C, Zhou H, Wang B, Lv J, Cao L, et al. Iridium-Catalyzed Highly Enantioselective Transfer Hydrogenation of Aryl N-Heteroaryl Ketones with N-Oxide as a Removable orthoSubstituent. Organic Letters. 2018;20(4):971−974; https://doi.org/10.1021/acs.orglett.7b03878
20. Everaere K, Mortreux A, Carpentier J-F. Ruthenium (II)-Catalyzed Asymmetric Transfer Hydrogenation of Carbonyl Compounds with 2-Propanol and Ephedrine-Type Ligands. Advanced Synthesis and Catalysis. 2003;345(1-2):67–77. https://doi.org/10.1002/adsc.200390030
21. Palmer M, Walsgrove T, Wills M. (1R, 2S)- (+)-cis-1-amino-2-indanol: An effective ligand for asymmetric catalysis of transfer hydrogenation of ketones. Journal of Organic Chemistry. 1997;62(15): 5226–5228. https://doi.org/10.1021/jo970405a
22. Huynh KD, Ibrahim H, Kolodziej E, Toffano M, Thanh GV. Synthesis of a new class of ligands derived from isosorbide and their application to asymmetric reduction of aromatic ketones by transfer hydrogenation. New Journal of Chemistry. 2011; 35(11):2622–2631. http://doi.org/10.1039/C1NJ20588A
23. Larionov SV, Tkachev AV, Myachina LI, Savel’eva ZA, Glinskaya LA, Klevtsova RF, et. al. Synthesis of binuclear complexes of PdCl2 with chiral α,α′-diamino-meta-xylene dioximes H2L 1 , H2L 2 , and H2L 3 , the derivatives of the terpenes (+)-3-carene, (R)-(+)-limonene, and (S)-(-)-α-pinene. Crystal structure of [Pd2(H2L 1 )Cl4]. Russian Journal of Coordination Chemistry. 2009;35(4):286–295. https://doi.org/10. 1134/S1070328409040095
24. Binder CM, Bautista A, Zaidlewicz M, Krzemiński MP, Olivier A, Singaram B. Dual Stereoselectivity in the Dialkylzinc Reaction Using (-)-βPinene Derived Amino Alcohol Chiral Auxiliaries. Journal of Organic Chemistry. 2009;74(6):2337–2343. https://doi.org/10.1021/jo802371z
25. Mookherjee BD, Wilson RA. Oils, Essential. In: Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed.; Kroschwitz JI, Howe-Grant M. (eds.) John Wiley & Sons: New York. 1993;17:603–674. https://doi.org/10.1002/0471238961.1509121913151511.a01
26. Blacker J, Mellor B. Transfer hydrogenation process and catalyst. Patent of Great Britain, no. WO/1998/042643, 1998.
27. OhkumaT, Ooka H, HashiguchiS, Ikariya T, Noyori R. Practical enantioselective hydrogenation of aromatic ketones. Journal of the American Chemical Society. 1995;117(9):2675–2676. https://doi.org/10.1 021/ja00114a043
28. Utepova IA, Serebrennikova PO, Streltsova MS, Musikhina AA, Fedorchenko TG, Chupakhin ON, et al. Antonchick A.P. Enantiomerically Enriched 1,2-P,N-Bidentate Ferrocenyl Ligands for 1,3-Dipolar Cycloaddition and Transfer Hydrogenation Reactions. Molecules. 2018;23(6):1311–1322. https://doi.org/10.3390/molecules23061311
29. Brunner H, Henning F, Weber M. Enantioselective catalysis. Part 143: Astonishingly high enantioselectivity in the transfer hydrogenation of acetophenone with 2-propanol using Ru complexes of the Schiff base derived from (S)-2-amino-2-hydroxy1,1-binaphthyl (NOBIN) and 2-pyridinecarbaldehyde. Tetrahedron Asymmetry. 2002;13(1):37–42. https://doi.org/10.1016/S0957-4166(02)00029-0
30. Diaz-Valenzuela MB, Phillips SD, France MB, Gunn ME, Clarke M. Enantioselective Hydrogenation and Transfer Hydrogenation of Bulky Ketones Catalysed by a Ruthenium Complex of a Chiral Tridentate Ligand. Chemistry – A European Jornal. 2009;15(5): 1227–1232. https://doi.org/10.1002/chem.200801929
31. Fuentes Garcia JA, Carpenter I, Kann N, Clarke ML. Highly enantioselective hydrogenation and transfer hydrogenation of cycloalkyl and heterocyclic ketones catalysed by an iridium complex of a tridentate phosphine-diamine ligand. Chemical Communications. 2013;49(87):10245–10247. https://doi.org/10.1039/C3CC45545A
32. Zweifel T, Scheschkewitz D, Ott T, Vogt M, Grutzmacher H. Chiral [Bis(olefin)amine]rhodium(I) Complexes – Transfer Hydrogenation in Ethanol. European Journal of Inorganic Chemistry. (Berichte der deutschen chemischen Gesellschaft). 2009; 2009(36):5561–5576. https://doi.org/10.1002/ejic.200900875
33. Matharu DS, Martins JED, Wills M. Asymmetric Transfer Hydrogenation of C = O and C = N Bonds by Tethered RhIII Catalysts. Chemistry – An Asian Journal. 2008;3(8-9):1374–1383. https://doi.org/10.1002/asia.200800189
34. Hayes AM, Morris DJ, Clarkson GJ, Wills M. A Class of Ruthenium(II) Catalyst for Asymmetric Transfer Hydrogenations of Ketones. Journal of the American Chemical Society. 2005;127(20):7318–7319. https://doi.org/10.1021/ja051486s
35. Matharu DS, Morris DJ, Kawamoto AM, Clarkson GJ, Wills M. A Stereochemically Well-Defined Rhodium(III) Catalyst for Asymmetric Transfer Hydrogenation of Ketones. Organic Letters. 2005;7(24): 5489–5491. https://doi.org/10.1021/ol052559f
36. Tanielyan SK, Martin N, Alvez G, Augustine RL. Two Efficient Enantioselective Syntheses of 2-Amino-1-phenylethanol. Organic Process Research and Development. 2006;10(5):893–898. https://doi.org/10.1021/op060122x
37. Coll M, Pàmies O, Adolfsson H, Diéguez M. Second-Generation Amino Acid Furanoside Based Ligands from D-Glucose for the Asymmetric Transfer Hydrogenation of Ketones. ChemCatChem. 2013; 5(12):3821–3828. https://doi.org/10.1002/cctc.20130 0456
38. Dong Z-R, Li Y-Y, Chen J-S, Li B-Z, Xing Y, Gao J-X. Highly Efficient Iridium Catalyst for Asymmetric Transfer Hydrogenation of Aromatic Ketones under Base-Free Conditions. Organic Letters. 2005; 7(6):1043–1045. https://doi.org/10.1021/ol047412n
39. Dong ZR, Li Y-Y, Yu S-L, Sun GS, Gao J-X. Asymmetric transfer hydrogenation of ketones catalyzed by nickel complex with new PNO-type ligands. Chinese Chemical Letters. 2012;23(5): 533–536. https://doi.org/10.1016/j.cclet.2012.02.005
40. Li Y-Y, Yu S-L, Shen W-Y, Gao J-X. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones. Accounts of Chemical Research. 2015;48(9): 2587–2598. https://doi.org/10.1021/acs.accounts.5b00043
41. Chen JS, Chen LL, Xing Y, Chen G, ShenWY, Dong ZR, et al. Asymmetric Transfer Hydrogenation of Ketones Catalyzed by Chiral Carbonyl Iron Systems. Acta Chimica Sinica. 2004;62(18):1745–1750.
42. Yu S, Shen W, Li Y, Dong Z, Xu Y, Li Q, et al. Iron-Catalyzed Highly Enantioselective Reduction of Aromatic Ketones with Chiral P2N4-Type Macrocycles. Advanced. Synthesis and Catalysis. 2012; 354(5):818–822. https://doi.org/10.1002/adsc.201100733
43. De Luca L, Passera A, Mezzetti A. Asymmetric Transfer Hydrogenation with a Bifunctional Iron(II) Hydride: Experiment Meets Computation. Journal of the American Chemical Society. 2019; 141(6):2545−2556. https://doi.org/10.1021/jacs.8b12506
44. Zhang W-J, Ruan S-H, Shen W-Y, Wang Z, An D-L, Li Y-Y, et al. Highly Enantioselective Reduction of Ketones in Air Catalyzed by Rh-Based Macrocycles. Catalysis Communication. 2019;119(10): 153–158. https://doi.org/10.1016/j.catcom.2018.10.030
45. Zhang X-Q, Li Y-Y, Dong Z-R, Shen W-Y, Cheng Z-B, Gao J-X. Asymmetric transfer hydrogenation of aromatic ketones with chiral diaminothiophene/iridium catalyst systems. Journal of Molecular Catalysis A: Chemical. 2009;307(1-2): 149–153. https://doi.org/10.1016/j.molcata.2009.03.019
46. Nikishkin NI, Huskens J, Verboom W. Hydrophilic pyrazine-based phosphane ligands: synthesis and application in asymmetric hydride transfer and H2-hydrogenation of acetophenone. Tetrahedron letters. 2013;54(14):1857–1861. https://doi.org/10.10 16/j.tetlet.2013.01.108
47. Horvath HH, Joo F. Stereoselective homogeneous catalytic hydrogenation of disubstituted alkynes in aqueous-organic biphasic media. React. Reaction Kinetics and Catalysis Letters. 2005;85(2): 355–360. https://doi.org/10.1007/s11144-005-0281-7
48. Snelders DJM, Siegler MA, von Chrzanowski LS, Spek AL, van Koten G, Klein Gebbink RJM. Coulombic inter-ligand repulsion effects on the Pt(II) coordination chemistry of oligocationic, ammoniumfunctionalized triarylphosphines. Dalton Transactions. 2011;40(11):2588–2600. https://doi.org/10.1039/C0DT01105c
49. Chen G, Xing Y, Zhang H, Gao J-X. Synthesis of novel chiral macrocyclic ONNO-type ligands and use in asymmetric transfer hydrogenation. Journal of Molecular Catalysis A: Chemical.2007;273(1-2): 284–288. https://doi.org/10.1016/j.molcata.2007.04.017
Review
For citations:
Badyrova N.M., Nindakova L.O. Chiral complexes of transition metals with chelating nitrogen ligands in asymmetric hydrogenation with hydrogen transfer. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(4):621-634. (In Russ.) https://doi.org/10.21285/2227-2925-2019-9-4-621-634