Problems and prospects for the application of microorganisms in the disposal of lignocellulose waste
https://doi.org/10.21285/2227-2925-2019-9-4-679-693
Abstract
The conversion of household and industrial wastes containing lignocellulose into a variety of target products (bioenergy sources, organic acids, sweeteners, etc.) involves one of the priority directions for the state environmental policy of the Russian Federation. However, the profitability of processing the substrates obtained by hydrolysis of such secondary sources of raw materials is determined by the possibility of microbiological utilisation for not only hexoses (D-glucose, D-mannose, D-galactose), but also pentose (D-xylose, L-arabinose). The aim of this review consists in a discussion of the prospects for using microorganisms in the disposal of lignocellulose pentoses, along with problems arising in the course of the technological implementation of this process. The review provides contemporary data on the spectrum of pro- and eukaryotic microorganisms ensuring the destruction of lignocellulose and the utilisation of its structural components in natural ecosystems. A brief description of action mechanism inherited to the enzymes of ligninase, cellulase and hemicellulase complexes is presented. The main problems hindering the enzymatic hydrolysis application to multicomponent household and industrial lignocellulose wastes are identified. The factors determining the selectivity of pentosis catabolism in mycelial fungi, bacteria and yeast are examined. The spectrum of target products in bioconversion of lignocellulose pentoses, is determined with regard of their economic importance. The methods of complex microbiological utilisation of various household and agricultural wastes, as well as the possibility of involving by-products from industrial destruction of wood (acid hydrolysates and sulphite liquors) in this process, are discussed.
The authors declare no conflict of interests regarding the publication of this article.
About the Authors
O. I. BolotnikovaRussian Federation
Оlga I. Bolotnikova, Cand. Sci. (Biology), Associate Professor, Department of Biomedical Chemistry, Immunology and Laboratory Diagnostics, Institute of Medicine
33, Lenin Ave., Petrozavodsk 185910, Republic of Karelia
N. P. Mikhailova
Russian Federation
Natalia P. Mikhailova, Dr. Sci. (Biology), Senior Researcher, Sub-Department of Molecular Biotechnology, Department Chemical and Biotechnology
26, Moskovskii Ave., St. Petersburg 190013
Ju. G. Bazarnova
Russian Federation
Julia G. Bazarnova, Dr. Sci. (Engineering), Professor, Graduate School of Biotechnology and Food Science
29, Politehnicheskaya St., St. Petersburg 195251
E. B. Aronova
Russian Federation
Ekaterina B. Aronova, Cand. Sci. (Engineering), Associate Professor, Graduate School of Biotechnology and Food Science
29, Politehnicheskaya St., St. Petersburg 195251,
T. A. Bolotnikova
Russian Federation
Тatyana А. Bolotnikova, Master Student, Graduate School of Biotechnology and Food Science
29, Politehnicheskaya St., St. Petersburg 195251
Ju. N. Akinina
Russian Federation
Julia N. Akinina, Master Student, Sub-Department of Physical Chemistry, Department of Substances and Materials Chemistry
26, Moskovskiy Ave., St. Petersburg 190013
References
1. Kal'ner VD. An ecologically oriented human environment is an integral criterion for the quality of life. Ekologiya i promyshlennost' Rossii = Ecology and Industry of Russia. 2019;23(10):50–55. (In Russian)
2. Bolotnikova OI, Mikhailova NP, Ginak AI. Acid and enzymatic hydrolysis of non- food-based biomass sources: prospects for industrial implementation. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta). = Bulletin of the Saint Petersburg State Institute of Technology (Technical University). 2017;39:89–95. (In Russian)
3. Cheng H, Wang L. Lignocelluloses feedstock biorefinery as petrorefinery substitutes. Open access peer-reviewed chapter. 2013. Available from: https://www.intechopen.com/books/biomass-nowsustainable-growth-and-use/lignocelluloses-feed stock-biorefinery-as-petrorefinery-substitutes [Accessed 26th Januaru 2019].
4. Chen H. Biotechnology of lignocellulose, theory and practice. Chemical Industry Press, Beijing and Springer; 2014. 510 p.
5. Gunich SV, Yanchukovskaya EV, Dneprovskaya NI. Analysis of modern methods of hard domestic wastes processing. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2015;2:110–115. (In Russian)
6. Shchukina TV. Biogas – prospects and manufacture possibilities. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2012;1: 113–118. (In Russian)
7. ChkhenkeliVA, GlushenkovaTV, Goryaeva NA, Chkhenkeli LG, Kalinovich AE. Optimization of production of biologically active substance on the basis of the fungus-xylotroph Trametes pubescens shumach.: Fr.)Pilat. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2011;1:84–89. (In Russian)
8. Maitan-Alfenas GP, Visser EM, Guimarães VM. Enzymatic hydrolysis of lignocellulosic bio mass: converting food waste in valuable products. Current Opinion in Food Science. 2015;1:44–49. https://doi.org/10.1016/j.cofs.2014.10.001
9. Ferreira JA, Mahboubi A, Lennartsson PR, Taherzadeh MJ. Waste biorefineries using filamentous ascomycetes fungi: present status and future prospects. Bioresource Technology. 2016;215:334– 345. https://doi.org/10.1016/j.biortech.2016.03.018
10. Kulikova NA, Kleina OI, Stepanova EV, Koroleva OV. Use of Basidiomycetes in Industrial Waste Processing and Utilization Technologies: Fundamental and Applied Aspects (Review). Applied Biochemistry and Microbiology. 2011;47(6): 619–634.
11. Jönsson LJ, Alriksson B, Nilvebrant N-O. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels. 2013;6(1): 16–26. https://doi.org/10.1186/1754-6834-6-16
12. Górska EB, Jankiewicz U, Dobrzyński J, Gałązka А, Sitarek M, Gozdowski D, et al. Production of ligninolytic enzymes by cultures of white rot fungi. Polish journal of microbiology. 2014;63(4): 461–465. https://doi.org/10.33073/pjm-2014-062
13. Plácido J, Capareda S. Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresources and Bioprocessing. 2015;2: 12 p. https://doi.org/10.1186/s40643-015-0049-5
14. Sokan-Adeaga AA, Ana Godson REE, SokanAdeaga MA, Sokan-Adeaga ED. Lignocelluloses: An economical and ecological resource for bioethanol production. A Review. International Journal of Natural Resource Ecology and Management. 2016;1(3):128–144. https://doi.org/10.11648/j.ijnrem. 20160103.18
15. Pristavka AA, Popova IV. Influence of sodium fluoride on enzymatic activity of fungal cellulases. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2015;1:36–46. (In Russian)
16. Gavrilov SN, Stracke C, Jensen K, Menzel P, Kallnik V, Slesarev A, et al. Isolation and characterization of the first xylanolytic hyperthermophilic euryarchaeon Thermococcus sp. strain 2319×1 and its unusual multidomain glycosidase. Frontiers in Microbiology. 2016;7(75):552–569. https://doi.org/10.3389/fmicb.2016.00552
17. Peng X, Qiao W, Mi S, Jia X, Su H, Han Y. Characterization of hemicellulase and cellulase from the extremely thermophilic bacterium Caldicellulosiruptor owensensis and their potential application for bioconversion of lignocellulosic biomass without pretreatment. Biotechnology for Biofuels. 2015;8(1): 131–145. https://doi.org/10.1186/s13068-015-0313-0
18. Kurtzman CP, Fell JW, Boekhout T. (eds.). The Yeasts A Taxonomic Study. 5th ed. Elsevier, Amsterdam, Netherlands; 2011. 2354 p. https://doi.org/10.1016/B978-0-444-52149-1.00007-0
19. Mahboubi A, Ferreira JA, Taherzadeh MJ, Lennartsson PR. Production of fungal biomass for feed, fatty acids, and glycerol by Aspergillus oryzae from fat-rich dairy substrates. Fermentation. 2017;3(4): 48–58. https://doi.org/10.3390/fermentation3040048
20. Bolotnikova OI, Trushnikova EP, Mikhailova NP, Ginak AI. Production of xylitol and ethanol and activity of the key enzymes of D-xylose consumption in Pachysolen tannophilus mutant strains. Microbiology. 2015;84(4):479–484. https://doi.org/10. 1134/S0026261715040049
21. De Groot MJ, Prathumpai W, Visser J, Ruijter GJ. Metabolic control analysis of Aspergillus niger L-arabinose catabolism. Biotechnology Progress. 2005; 21(6):1610–1616. https://doi.org/10.1021/bp050189o
22. Koirala S, Wang X, Rao CV. Reciprocal regulation of L-arabinose and D-xylose metabolism in Escherichia coli. Journal of Bacteriology. 2016; 198(3):386–393. https://doi.org/10.1128/JB.00709-15
23. Chen X, Jiang Z-H, Chen S, Qin W. Microbial and bioconversion production of D-xylitol and its detection and application. International Journal of Biological Sciences. 2010;6(7):834–844. https://doi.org/10.7150/ijbs.6.834
24. Saha BC, Kennedy GJ, Qureshi N, Bowman MJ. Production of itaconic acid from pentose sugars by Aspergillus terreus. Biotechnology Progress. 2017;33(4):1059–1067. https://doi.org/10.10 02/btpr.2485
25. Watanabe S, Kodaki T, Makino K. L-Arabinose 1-dehydrogenase: A novel enzyme involving in bacterial L-arabinose metabolism. Nucleic Acids Symposium Series. 2005;49(1):309–310. https://doi.org/10.1093/nass/49.1.309
26. Bajerski F, Ganzert L, Mangelsdorf K, Lipski A, Busse H-J, Padur L, et al. Herbaspirillum psychrotolerans sp. nov., a member of the family Oxalobacteraceae from a glacier forefield. International Journal of Systematic and Evolutionary Microbiology. 2013;63(9):3197–3203. https://doi.org/10.1099/ijs.0.046920-0
27. Zhao B, Chen S. Alkalitalea saponilacus gen. nov., sp. nov., an obligately anaerobic, alkaliphilic, xylanolytic bacterium from a meromictic soda lake. International Journal of Systematic and Evolutionary Microbiology. 2012;62(11):2618–2623. https://doi.org/10.1099/ijs.0.038315-0
28. Zhilina TN, Kevbrin VV, Tourova T, Lysenko AM, Kostrikina NA, Zavarzin GA. Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the baikal region. Microbiology. 2005;74(5):557–566. https://doi.org/10.1007/s11021-005-0103-y
29. Pugin B, Blamey JM, Baxter BK, Wiegel J. Amphibacillus cookii sp. nov., a facultatively aerobic, spore-forming, moderately halophilic, alkalithermotolerant bacterium. International Journal of Systematic and Evolutionary Microbiology. 2012;62(9): 2090–2096. https://doi.org/10.1099/ijs.0.034629-0
30. Luo H, Wu Y, Kole C. Compendium of Bioenergy Plants: Switchgrass. CRC Press; 2014. 464 p.
31. Zimmermann FK, Entian K-D. Yeast Sugar Metabolism. Biochemistry, Genetics, Biotechnology and Application. CRC Press; 1997. 567 p.
32. Gupta R, Mehta G, Kuhad RC. Fermentation of pentose and hexose sugars from corncob, a low cost feedstock into ethanol. Biomass and Bioenergy. 2012;47:334–341. https://doi.org/10.1016/j.biombioe. 2012.09.027
33. Skiba EA, Mironova GF. Advantages of combining biocatalytic stages in bioethanol synthesis from cellulosic biomasses. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Higher School. Applied Chemistry and Biotechnology. 2016;6(4):53–60. (In Russian) https://doi.org/10. 21285/2227-2925-2016-6- 4-53-60
34. Kozlov IA, Garipov RM. Catalysis and its impact in the processes of deep processing of plant biomass. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Higher School. Applied Chemistry and Biotechnology. 2017;7(1):188–191. (In Russian) https://doi.org/10.21285/2227-2925-2017- 7-1-188-191
35. Makarova E.I., Budaeva V.V. Estimation of the efficiency of the oat bran enzymatic hydrolysis with feeding at high initial substrate concentrations. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Higher School. Applied Chemistry and Biotechnology. 2017:7(4):51–57. (In Russian) https://doi.org/10.21285/2227-2925-2017-7- 4-51-57
36. Molokova KV, Privalova EA, Gil TA. Cultivation of clostridium acetobutylicum vkm 1787 – producer of butanol, acetone and ethanol. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Higher School. Applied Chemistry and Biotechnology. 2013:1(4):87–91. (In Russian)
37. Raganati F, Olivieri G, Russo ME, Marzocchella A. Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor fed with cheese whey. Chemical Engineering Transactions. 2013;32:937–642. https://doi.org/10.3303/CET1332157
38. Sousa JAB, Sorokin DY, Bijmans MFM, Plugge CM, Stams AJM. Ecology and application of haloalkaliphilic anaerobic microbial communities. Applied Microbiology and Biotechnology. 2015; 99(22): 9331–9336. https://doi.org/10.1007/s00253-015-6937-y
39. Jung M-Y, Mazumdar S, Shin SH, Yang KS, Lee J, Oh M-K. Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene. Applied and Environmental Microbiology. 2014;80(19):6195–6203. https://doi.org/10.1128/AEM.02069-14
40. Gupta A, Murarka A, Campbell P, Gonzalez R. Anaerobic fermentation of glycerol in paenibacillus macerans: Metabolic pathways and environmental determinants. Applied and Environmental Microbiology. 2009;75.(18):5871–5883. http://dx.doi.org/10.1128/AEM.01246-09
41. Sravanthi T, Tushar L, Sasikala Ch, Ramana ChV. Alkalispirochaeta cellulosivorans gen. nov., sp. nov., a cellulose-hydrolysing, alkaliphilic, halotolerant bacterium isolated from the gut of a woodeating cockroach (Cryptocercus punctulatus), and reclassification of four species of Spirochaeta as new combinations within Alkalispirochaeta gen. nov. International Journal of Systematic and Evolutionary Microbiology. 2016;66(4):1612–1619. https://doi.org/10.1099/ijsem.0.000865
42. Balasubramanian N, Kim JS, Lee YY. Fermentation of xylose into acetic acid by Clostridium thermoaceticum. Applied Biochemistry and Biotechnology. 2001;91(1-9):367–376. https://doi.org/10.1385/abab:91-93:1-9:367
43. Liu H, Wang W, Deng L, Wang F, Tan T. High production of fumaric acid from xylose by newly selected strain Rhizopus arrhizus RH 7-13-9#. Bioresource Technology. 2015;186:348–350. https://doi.org/10.1016/j.biortech.2015.03.109
44. Anasontzis GE, Christakopoulos P. Challenges in ethanol production with Fusarium oxysporum through consolidated bioprocessing. Bioengineered. 2014;5(6):393–395. https://doi.org/10.4161/bioe.36328
45. Assis LF, Kagohara E, Omori ÁT, Comasseto JV, Andrade LH, Porto ALM. Deracemization of (RS)-1-[(4-methylselanyl)phenyl]ethanol and (rs)-1- [(4-ethylselanyl)phenyl]ethanol by strains of Aspergillus terreus. Food Technology and Biotechnology. 2007;45(4):415–419.
46. Chandel AK, Kapoor RK, Singh A, Kuhad RC. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technology. 2007;98(10): 1947–1950. https://doi.org/10.1016/j.biortech.2006.07.047
47. Agbogbo FK, Coward-Kelly G. Cellulosic ethanol production using the naturally occurring xylosefermenting yeast, Pichia stipites. Biotechnology Letters. 2008;30(9):1515–1524. https://doi.org/10.1007/s10529-008-9728-z
48. Prakash G, Varma AJ, Prabhune A, Shouche Y, Rao M. Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresource Technology. 2011;102(3): 3304–3308. https://doi.org/10.1016/j.biortech.2010.10.074
49. Zou YZ, Qi K, Chen X, Miao XL, Zhong JJ. Favorable effect of very low initial KLa value on xylitol production from xylose by a self-isolated strain of Pichia guilliermondii. Journal of Bioscience and Bioengineering. 2010;109(2):149–152. https://doi.org/10. 1016/j.jbiosc.2009.07.013
50. Dashtban M, Schraft H, Qin W. Fungal bioconversion of lignocellulosic residues; Opportunities & Perspectives. International Journal of Biological Sciences. 2009:5(6):578–595. https://doi.org/10.7150/ijbs.5.578
51. Vazetdinova AA, Kharina MV, Loginova IV, Kleschevnikov LI. Enzymatic hydrolysis of cellulosic residuals of furfural production from vegetable raw materials. Bashkirskii khimicheskii zhurnal = Bashkir Chemical Journal. 2017;24(1):27–31. (In Russian)
52. Kharina MV, Grigor'eva ON. Design features of reactors for acid hydrolysis of lignocellulosecontaining raw materials. Vestnik Tekhnologicheskogo universiteta = Bulletin of the Technological University. 2017;20(13):143–150. (In Russian)
53. Fazliev II, Minzanova ST, Akhmadullina F Yu, Mukhachev SG. The effect of different acids on grain hydrolysis. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya = Proceedings of Higher School. Applied Chemistry and Biotechnology. 2012;2:50–53. (In Russian)
54. Grigor'eva ON, Kharina MV. Acid hydrolysis of lignocellulose-containing raw materials in bioethanol production technology. Vestnik Tekhnologicheskogo universiteta = Bulletin of the Technological University. 2016;19(10):128–132. (In Russian)
55. Loginova IV, Kharina MV. Study of hightemperature autohydrolysis of lignocellulosic raw materials. Vestnik Tekhnologicheskogo universiteta = Bulletin of the Technological University. 2017;20(6): 143–145. (In Russian)
56. Bolotnikova OI, Mikhailova NP, Ginak AI. Comparative analysis of the growth physiology of xylose-assimilating yeasts candida shehtae and pachysolen tannophilus. Mikologiya i fitopatologiya = Mycology and Phytopathology. 2013;47(5):329–332. (In Russian)
Review
For citations:
Bolotnikova O.I., Mikhailova N.P., Bazarnova J.G., Aronova E.B., Bolotnikova T.A., Akinina J.N. Problems and prospects for the application of microorganisms in the disposal of lignocellulose waste. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(4):679-693. (In Russ.) https://doi.org/10.21285/2227-2925-2019-9-4-679-693