Light-scattering study of silver nanocomposites based on hydrophilic nitrogen-containing heterocyclic copolymers
https://doi.org/10.21285/2227-2925-2019-9-4-768-772
Abstract
A light scattering study was performed on new silver-containing polymer nanocomposites based on water-soluble copolymers of 1-vinyl-1,2,4-triazole having sodium salt of vinylsulphonic acid of various compositions. The formation of nanocomposites was carried out using chemical reduction of silver ions by sodium borohydride in a copolymer- containing aqueous medium. According to the dynamic light scattering data, a decrease in the average sizes of metal-polymer coils in water-salt solutions of nanocomposites is explained in terms of an increase in the content of sulphonate groups in the stabilising polymer matrix. The electrophoretic light scattering with phase analysis of synthesised nanocomposites reveals the zeta potential (ζ) to vary from -35.0 to -75.3 mV with an increased sulphonate unit proportion in the stabilising polymer matrix, indicating an increase in the stability of the colloidal system. The functional composition of the stabilising polymer matrix is established to provide a significant effect on the hydrodynamic dimensions of polymer nanocomposites in an aqueous medium.
The authors declare no conflict of interests regarding the publication of this article.
Keywords
About the Author
A. A. IvanovaRussian Federation
Anastasiya A. Ivanova, Junior Researcher
1, Favorsky St., Irkutsk 664033
References
1. Zenin AA. Synthesis of hybrid materials in polyelectrolyte matrixes: control over sizes and spatial organization of metallic nanostructures Polymer science. Series С. 2016;58(1):118–130. https://doi.org/10.1134/S1811238216010136
2. Demchenko V, Riabov S, Shtompel V. X-ray Study of Structural Formation and Thermomechanical Properties of Silver-Containing Polymer Nanocomposites. Nanoscale Research Letters. 2017; 12(1):235–240. https://doi.org/10.1186/s11671-017-1967-2
3. Dzhardimalieva GI, Uflyand IE. Preparation of metal-polymer nanocomposites by chemical reduction of metal ions: functions of polymer matrices. Journal of Polymer Research. 2018;25:255–320. https://doi.org/10.1007/s10965-018-1646-8
4. Tylkowski B, Trojanowska A, Nowak M, Marciniak L, Jastrzab R. Applications of silver nanoparticles stabilized and/or immobilized by polymer matrixes. Physical Sciences Reviews. 2017;2(7). 6 p. https://doi.org/10.1515/psr-2017-0024
5. Prakash J, Pivin JC, Swart HC. Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications. Advances in Colloid and Interface Science. Part B. 2015;226: 187–202. https://doi.org/10.1016/j.cis.2015.10.010
6. Gerasin VA, Antipov EM, KarbushevVV, Kulichikhin VG, Karpacheva GP, Talroze RV, et al. New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications. Russian Chemical Reviews. 2013;82(4):303–332. https://doi.org/10.1070/-RC2013v082n04ABEH004322
7. Derjaguin B, Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Progress Surface Science. 1993;43(1-4): 30–59. https://doi.org/10.1016/00796816(93)-90013-L
8. Verwey EJW. Theory of the Stability of Lyophobic Colloids. The Journal of Physical Chemistry. 1947;51(3):631–636. https://doi.org/10.1021/j150453a001
9. Manojkumar K, Sivaramakrishna A, Vijayakrishna K. A short review on stable metal nanoparticles using ionic liquids, supported ionic liquids, and poly(ionic liquids). Journal of Nanoparticle Research. 2016;18(4):103–124. https://doi.org/10.1007/s11051-016-3409-y
10. Zezin AA, Feldman VI, Abramchuk SS, Ivanchenko VK, Zezina EA, Shmakova NA, et al. Formation of metal-polymer hybrid nanostructures during radiation-induced reduction of metal ions in poly(acrylic acid)-poly(ethylenimine) complexes. Polymer Science. Series C. 2011;53(1):61–67. https://doi.org/10.1134/S1811238211060038
11. ProzorovaGF, PozdnyakovAS, Emel’yanovAI, Korzhova SA, Ermakova TG, Trofimov BA. Watersoluble silver nanocomposites with 1-Vinyl-1,2,4- triazole copolymer. Doklady Chemistry. 2013;449(1): 87–88. https://doi.org/10.1134/S00125-00813030051
12. Pozdnyakov AS, Emel’yanov AI, Ermakova TG, Prozorova GF. Functional polymer nanocomposites containing triazole and carboxyl groups. Polymer Science. Series B. 2014;56(2):238–246. https://doi.org/10.1134/s1560090414020122
13. Kuznetsova NP, Ermakova TG, PozdnyakovAS, Emel'yanov AI, Prozorova GF. Synthesis and characterization of silver polymer nanocomposites of 1-vinyl-1,2,4-triazole with acrylonitrile. Russian Chemical Bulletin. 2013;62(11):2509–2513. https://doi.org/10.1007/s11172-013-0364-y
14. Pozdnyakov A.S., Emel’yanov A.I., Kuznetsova N.P., ErmakovaT.G., Korzhova S.A., Khutsishvili S.S., et al. Synthesis and Characterization of Silver-Containing Nanocomposites Based on 1-Vinyl1,2,4-triazole and Acrylonitrile Copolymer. Journal of Nanomaterials. 2019. Article ID 4895192. 7 p. https://doi.org/10.1155/2019/4895192
15. Prozorova GF, Korzhova SA, Mazyar IV, Belovezhets LA, Kuznetsova NP, Emel’yanov AI, et al. Synthesis and properties of novel copolymerAg(0) nanocomposites. Izvestiya Vuzov. Prikladnaya Khimiyai Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(1):22-27. (In Russian) https://doi.org/.org/10.21285/2227-2925-2019-9-1-22-27
16. PozdnyakovAS, Ivanova AA, Emelyanov AI, Ermakova TG, Prozorova GF. Nanocomposites with silver nanoparticles based on copolymer of 1-vinyl-1,2,4-triazole with N-vinylpyrrolidone. Russian Chemical Bulletin. 2017;66(6):1099–1103. https://doi.org/10.1007/s11172-017-1860-2
17. Pozdnyakov AS, Emel’yanov AI, Kuznetsova NP, Ermakova TG, Bolgova YI, Trofimova OM, et al. A Polymer Nanocomposite with CuNP Stabilized by 1-Vinyl-1,2,4-triazole and Acrylonitrile Copolymer. Synlett. 2016;27(6):900–904. https://doi.org/-10.1055/s-0035-1561292
18. Prozorova GF, Korzhova SA, Pozdnyakov AS, Emelyanov AI, Ermakova TG, Dubrovina VI. Immunomodulatory properties of silver-containing nanocomposite on the basis of polyvinyltriazole. Russian Chemical Bulletin. 2015;64(6):1437–1439. https://doi.org/10.1007/s11172-015-1028-x
19. Zezina EA, Emel’yanov AI, Pozdnyakov AS, Prozorova GF, Abramchuk SS, Feldman VI, et al. Radiation-induced synthesis of copper nanostructures in the films of interpolymer complexes. Radiation physics and chemistry. 2019;158:115–121. https://doi.org/10.1016/j.radphyschem.2019.01.019
20. Pozdnyakov AS, Emel’yanov AI, Kuznetsova NP, ErmakovaTG, FadeevaТV, Sosedova LM, et al. Nontoxic hydrophilic polymeric nanocomposites containing silver nanoparticles with strong antimicrobial activity. The International Journal of Nanomedicine. 2016;11:1295–1304. https://doi.org/10.2147/IJN.S98995
21. Pozdnyakov AS, Sekretarev EA, Emel’yanov AI, Prozorova GF. Hydrophilic functional copolymers of 1-vinyl-1,2,4-triazole with vinylsulfonic acid sodium salt. Russian Chemical Bulletin. 2017;66(12):2293–2297. https://doi.org/10.1007/s11172-017-2017-z
Review
For citations:
Ivanova A.A. Light-scattering study of silver nanocomposites based on hydrophilic nitrogen-containing heterocyclic copolymers. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(4):768-772. https://doi.org/10.21285/2227-2925-2019-9-4-768-772