Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

MODELING OF BACTERIA-ORGANOTROPHS OXYGEN BIOTRANSFORMATION TO HYDROGEN PEROXIDE STIMULATING ZINC CORROSION

https://doi.org/ 10.21285/2227-2925-2017-7-2-80-88

Abstract

The effect of nutrient medium composition on the release of bacteria acting on the surface of zinc, hydrogen peroxide as a product of oxygen biotransformation electron-transport circuit components of bacteria were studied. It is shown that cultivation of gram-positive bacteria Bacillus subtilis and Clostridium spp. on a meat peptone agar medium was accompanied by the formation of hydrogen peroxide in a smaller amount as against bacteria when cultured on glucose mineral medium. Impact of gram-negative bacteria Pseudomonas aeruginosa and Pseudomonas fluorescens on zinc surface in favorable conditions for the vital activity leads to the high hydrogen peroxide formation.

About the Authors

A. A. Kalinina
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation


S. Y. Radostin
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation


A. S. Makedoshin
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation


T. N. Sokolova
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation


V. F. Smirnov
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation


V. R. Kartashov
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation


References

1. Javaherdashti R. Microbiologically Influenced Corrosion аn Engineering Insight. UK: Springer-Verlag, 2008. 164 р.

2. Little B.J., Lee J.S. Microbiologically Influenced Corrosion. NJ: John Wiley & Sons. Inc. Hoboken, 2007. 279 p.

3. Beech I.B. Biocorrosion: role of sulfate-reducing bacteria. Encyclopedia of environmental microbiology. New York: Wiley, 2002. Р. 465-475.

4. Kip N., van Veen J. A. The dual role of microbes in corrosion // The International Society for Microbial Ecology Journal. 2014. N 9. P. 542-551. DOI: 10.1038/ismej.2014.169

5. Lewandowski Z., Beyenal H. Fundamentals in Biofilm Research. Second Edition. CRC Press, 2013. 614 p.

6. Герасименко А.А., Андрющенко Т.А. Защита меди от микробной коррозии в морских и приморских средах // Технология машиностроения. 2013. N 1. С. 39-44.

7. Карпов В.А., Ковальчук Ю.Л., Кузнецов Ю.И., Беленева И.А., Харченко У.В. Защита от морской коррозии сталей в замкнутых объемах // Коррозия: материалы, защита. 2013. N 5. С. 35-40.

8. Chang Y-J., Hung C-H., Lee J.W., Chang Y-T., Lin F-Y., Chuang C-J. A study of microbial population dynamics associated with corrosion rates influenced by corrosion control materials // International Biodeterioration & Biodegradation. 2015. N 102. Р. 330-338. DOI: 10.1016/j.ibiod.2015.03.008.

9. Lear G. (Editor) Microbial Biofilms: Current Research and Applications. Wymondham, Caister Academic Press, 2012. 228 p.

10. Schaule G., Griebe T., Flemming H.-C. Steps in biofilm sampling and characterization in biofouling cases // Microbiologically Influenced Corrosion of industrial materials. 1999. V. 157, N 1. Р. 117-138.

11. Челнокова М.В., Белов Д.В., Калинина А.А., Соколова Т.Н., Смирнов В.Ф., Карташов В.Р. Активные формы кислорода в коррозии металлов // Коррозия: материалы, защита. 2011. N 3. С. 19-26.

12. Белов Д.В., Калинина А.А., Соколова Т.Н., Смирнов В.Ф., Челнокова М.В., Карташов В.Р. Роль супероксидного анион - радикала в бактериальной коррозии металлов // Прикладная биохимия и микробиология. 2012. Т.48, N 3. С. 302.

13. Auchere F., Rusnak F. What is the ultimate fate of superoxide anion in vivo? // Journal of Biological Inorganic Chemistry. 2002. V. 6. P. 664-667. DOI: 10.1007/s00775-002-0362-2

14. Skulachev V.P. Biochemical mechanisms of evolution and the role of oxygen // Biochemistry-Moscow. 1998. V. 63, N 11. Р. 1335-1343.

15. Bielski B.H.J., Cabelli D.E., Arudi R.L., Ross A.B. Reactivity of HO2/O2-Radicals in Aqueous Solution // Journal of Physical and Chemical Reference Data. 1985. V. 14, N 4. P. 1041-1100.

16. Allen A.O., Hochanadel C.J., Ghormley J.A., Davis T.W. Decomposition of water and aqueous solutions under mixed fast neutron and gamma radiation // Journal of Physical Chemistry. 1952. V. 56, N 5. Р. 575-586. DOI: 10.1021/j150497a007.

17. Maruthamuthu S., Dhandapani P., Ponmariappan S., Bae Jeong-Hyo, Palaniswamy N., Pattanathu K.S.M. Rahman Impact of Ammonia Producing Bacillus sp. on Corrosion of Cupronickel alloy 90:10 // Metals and Materials International. 2009. V. 15,. N 3. Р. 409-419. DOI: 10.1007/s12540-009-0409-9

18. Belov D.V., Sokolova T.N., Kuzina O.V., Kartashov V.R., Smirnov V.F., Kostyukova L.V. Corrosion of aluminum and its alloys under the effect of microscopic fungi // Protection of metals and physical chemistry of surfaces. 2008. V. 44, N 7. P. 737-742.

19. Smirnov V.F., Sokolova T.N., Belov D.V., Kuzina O.V., Kartashov V.R. Microbiological corrosion of aluminum alloys // Applied Biochemistry and Microbiology. 2008. V. 44, N 2. С. 192-196.

20. Белов Д.В., Челнокова М.В., Соколова Т.Н., Смирнов В.Ф., Карташов В.Р. О роли активных форм кислорода в инициировании коррозии металлов микроскопическими грибами // Коррозия: материалы, защита. 2009. N 11. С. 43-48.

21. Fenton H.J. Oxidation of tartaric acid in the presence of iron // Journal of the Chemical Society. 1894. V. 65. P. 899-910. DOI: 10.1039/ct8946500899.


Review

For citations:


Kalinina A.A., Radostin S.Y., Makedoshin A.S., Sokolova T.N., Smirnov V.F., Kartashov V.R. MODELING OF BACTERIA-ORGANOTROPHS OXYGEN BIOTRANSFORMATION TO HYDROGEN PEROXIDE STIMULATING ZINC CORROSION. Proceedings of Universities. Applied Chemistry and Biotechnology. 2017;7(2):80-88. (In Russ.) https://doi.org/ 10.21285/2227-2925-2017-7-2-80-88

Views: 198


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)