Formation of humic substances in the reaction of D-glucose with p-toluidine in anhydrous ethanol
https://doi.org/10.21285/2227-2925-2020-10-2-188-195
Abstract
About the Authors
I. S. CherepanovRussian Federation
Cand. Sci. (Chemistry), Associate Professor
1 Universitetskaya St., Izhevsk 426034, Russian Federation
P. S. Kryukova
Russian Federation
Student
1 Universitetskaya St., Izhevsk 426034, Russian Federation
References
1. Goh KM, Stevenson FJ. Comparison of infrared spectra of synthetic and natural humic and fulvic acids. Soil Scince. 1971;112(6):392–400.
2. Stevenson FJ, Goh KM. Infrared spectra of humic acids and related substances. Geochimica et Cosmochimica Acta. 1971;35(5):471–483. https://doi.org/10.1016/0016-7037(71)90044-5
3. Sumerskii IV, Krutov SM, Zarubin MYa. Humin-like substances formed under conditions of industrial hydrolysis of wood. Russian Journal of Applied Chemistry. 2010;83(2):320–327. https://doi.org/10.1134/S1070427210020266
4. Litvin VA, Galagan RL, Minaev BF. Synthesis and properties of synthetic analogs of natural humic acids. Russian Journal of Applied Chemistry. 2012;85(2):296–302. https://doi.org/10.1134/S1070427212020243
5. Koroleva OV, Kulikova NA, Alekseeva TN, Stepanova EV, Davidchik VN, Belyatva EYu, et al. A comparative characterization of fungal melanin and humic-like substances synthesized by Cerrena maxima 0275. Applied Biochemistry and Microbiology. 2007;43(1):61–67.
6. Liang L, Zhou M, Li K, Jiang L. Facile and fast polyaniline-directed synthesis of monolithic carbon cryogels from glucose. Microporous and Mesoporous Materials. 2018;265(1):26–34. https://doi.org/10.1016/J.micromeso.2013.01.035
7. Bai C, Shen F, Qi X-H. Preparation of porous carbon directly from hydrothermal carbonization of fructose and phloroglucinol for adsorption of tetracycline. Chinese Chemical Letters. 2017;28(5):960–962. https://doi.org/10.1016/j.cclet.2016.12.026
8. Shul’tsev AL. N-glycosides of 4-aminostyrene. Russian Journal of General Chemistry. 2014;84(2):235–241. https://doi.org/10.1134/S1070363214020133
9. Cherepanov IS. Estimation of carbonized product’s aromaticity in carbohydrate–arylamine systems. Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Tekhnicheskie nauki. 2018;4:118–123. (In Russian) https://doi.org/10.17213/0321-2653-2018-4-118-123
10. Gressel N, McGrath AE, McColl JG, Powers RF. Spectroscopy of aqueous extracts of forest litter. I. Suitability of methods. Soil Science Society of Arnerica Journal. 1995;59(6):1715–1723. https://doi.org/10.2136/sssaj1995.03615995005900060030x
11. Van Zandvoort I, Koers E, Wiengarth M, Bruijnincx P, Baldus M, Weckhuysen B. Structural characterization of 13C-enriched humins and alkali–treated 13C-humins by 2D solid–state NMR. Green Chemistry. 2015;17(8):4383–4392. https://doi.org/10.1039/C5GC00327J
12. Zherebtsov SI, Malyshenko NV, Votolin KS, Androkhanov VA, Sokolov DA, Dugarjav J. et al. Humic preparations: relation between structural group composition and biological activity. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of the Kuzbass state technical university. 2018;5:52–60. (In Russian) https://doi.org/10.26730/1999-4125-2018-5-52-60
13. Tsilomelekis G, Orella M, Lin Z, Cheng Z, Zheng W, Nikolakis V, et al. Molecular structure, morphology and growth mechanism and rates of 5-hydroxymethylfurfural (HMF) derived humins. Green Chemistry. 2016;18(7):1983–1993. https://doi.org/10.1039/c5gc01938a
14. Yaylayan V, Kaminsky E. Isolation and structural analysis of Maillad polymers: caramel and melanoidin formation in glycine/glucose model system. Food Chemistry. 1998;63(1):25–31.
15. Yang Y-H, Sheng F-L, Tao Z-Y. Transmission FT-IR difference spectroscopic characterization of a fulvic acid from weathered coal in water. Toxicological and Environmental Chemistry. 1995;51(1-4):135–144. https://doi.org/10.1080/02772249509358231
16. Jung A-V, Frochot C, Parant S, Lartiges BS, Selve C, Viriot M-L, et al. Synthesis of aminophenolic humic-like substances and comparison with natural aquatic humic acids: a multi-analytical techniques approach. Organic Geochemistry. 2005;36(9):1252–1271. https://doi.org/10.1016/j.orggeochem.2005.04.004
17. Patil SKR, Lund CRF. Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy and Fuels. 2011;25(10): 4745–4755. https://doi.org/10.1021/ef2010157
18. Timofeev VP, Selimov FA, Dzhemelev UM. Aromatic Schiff's bases as growth regulator for plants. Patent RF, no. 210122; 1995. (In Russian)
19. Palande SV, Swamy DK. Synthesis, cha-racterization and biological activity of Schiff base 2{[2-(2-metoxy-phenoxy)-ethylimino]-methyl}-phenol and its transition metal complexes. International Research Journal of Science and Engineering. 2018;A2:35–40.
20. Atabaeva MA, Dzhedzheya VT, Luss AL, Ustinova MS, Shtilman MI. Polymeric forms of plant growth regulators. Uspekhi v khimii i khimicheskoi tekhnologii. 2019;33(2):18–19. (In Russian)
Review
For citations:
Cherepanov I.S., Kryukova P.S. Formation of humic substances in the reaction of D-glucose with p-toluidine in anhydrous ethanol. Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(2):188-195. https://doi.org/10.21285/2227-2925-2020-10-2-188-195