Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

Об агрегации в бинарных биополимерных системах

https://doi.org/10.21285/2227-2925-2020-10-2-223-231

Аннотация

Основным структурным белком, на долю которого приходится около 50 % массы всех водорастворимых белков хрусталика человеческого глаза, является α-кристаллин. Одна из основных функций α-кристаллина – шаперонная, обуславливающая необновляемость белков в процессе жизнедеятельности. α-Кристаллины частично или полностью стабилизируют развернутые белки, препятствуя образования осадка, что способствует сохранению прозрачности хрусталика и снижению риска возникновения ряда заболеваний, в том числе катаракты. С другой стороны, это явление можно рассматривать в рамках материаловедения при  решении вопроса замедления процессов старения полимеров. В данном исследовании на примере бинарной  системы α-лактальбумин–αA-кристаллин рассмотрены способы замедления процесса агрегации α-лактальбумина в растворе. С этой целью экспериментальные данные по скорости изменения процесса агрегации были формализованы, то есть выражены через температуры перехода и функции пластификации  компонентов. Предложенные выражения позволяют уточнить концентрационную зависимость начальной скорости агрегации, ее порядок, а также количественно оценить влияние дозы УФ-облучения на процесс старения системы. Физически полученный результат означает, что повышение содержания α-кристаллина приводит к дополнительному блокированию водородных связей в поверхностных слоях α-лактальбумина и, соответственно, к увеличению пластифицирующего эффекта. Кроме того, полученное выражение энергии активации перестроения цепи полимера позволяет учесть влияние ИК-излучения на развитие так называемой тепловой катаракты (обычно имеет место у стеклодувов, сталеваров, кузнецов, сварщиков и людей других профессий), когда этиологическим фактором являются ИК-лучи с длиной волны от 0,74 до 2,50 мкм, которые свободно проходят через роговую и радужную оболочки, не повреждая их, и в значительной степени адсорбируются хрусталиком, что приводит к его перегреву.



Об авторах

Ю. И. Матвеев
Институт биохимической физики им. Н.М. Эммануэля РАН
Россия
к.ф.-м.н., старший научный сотрудник

119334, г. Москва, ул. Косыгина, 4, Российская Федерация
 



Е. В. Аверьянова
Бийский технологический институт (филиал) ФГБОУ ВО «Алтайский государственный технический университет им. И.И. Ползунова»
Россия
к.х.н., доцент кафедры биотехнологии

659305, г. Бийск, ул. им. Героя Советского Союза Трофимова, 27, Российская Федерация




Список литературы

1. Павлов М.Р., Николаев Е.В., Андреева Н.П., Барботько С.Л. К вопросу о методике оценки стойкости полимерных материалов к воздействию солнечного излучения (обзор) // Труды ВИАМ. 2016. N 7 (43). С. 98–112. https://doi.org/10.18577/2307-6046-2016-0-7-11-11 [Электронный ресурс]. URL: http://viamworks.ru/plugins/content/journal/uploads/articles/pdf/987.pdf

2. Tweeddale H.J., Hawkins C.L., Janmie J.F., Truscott R.J., Davies M.J. Cross-linking of lens crystallin proteins induced by tryptophan metabolites and metal ions: implications for cataract development // Free Radical Research. 2016. Vol. 50. Issue 10. P. 1116–1130. https://doi.org/10.1080/10715762.2016.1210802

3. Королева И.А., Егоров А.Е. Метаболизм хрусталика: особенности и пути коррекции // РМЖ. Клиническая офтальмология. 2015. Т. 15. N 4. С. 191–195.

4. Муранов К.О., Островский М.А. Молекулярная физиология и патология хрусталика глаза. М.: Торус Пресс, 2013. 295 с.

5. Borzova V.A., Markossian K.A., Muranov K.O., Polyansky N.B., Kleymenov S.Yu., Kurganov B.I. Quantification of anti-aggregation activity of UV-irradiated alpha-crystallin // International Journal of Biological Macromolecules. 2015;73:84–91. https://doi.org/10.1016/j.ijbiomac.2014.10.060

6. Bumagina Z.M., Gurvits B.Y., Artemova N.V., Muranov K.O., Yudin I.K., Kurganov B.I. Mechanism of suppression of dithiothreitolinduced aggregation of bovine alpha- lactalbumin by alpha-crystallin // Biophysical chemistry. 2010. Vol. 146. P. 108–117. https://doi.org/10.1016/j.bpc.2009.11.002

7. Borzova V.A., Markossian K.A., Kurganov B.I. Relationship between the initial rate of protein aggregation and the lag period for amorphous aggregation // International Journal of Biological Macromolecules. 2014. Vol. 68. P. 144–150. https://doi.org/10.1016/j.ijbiomac.2014.04.046

8. Глесстон С, Лейдлер К., Эйринг Г. Теория абсолютных скоростей реакций / пер. с англ. М.: Государственное издательство иностранной литературы, 1948. 584 с.

9. Matveyev Y.I., Askadskii A.A. Additive scheme for determining the activation energy of low temperature transitions in polymers // Polymer Science U.S.S.R. 1991. Vol. 33. Issue 6. P. 1154–1161. https://doi.org/10.1016/0032-3950(91)90221-B

10. Matveev Yu.I. Determination of the temperatures of transition into the state of viscous flow, denaturation, and the onset of intensive destruction of proteins with various structures // Polymer Science. Series A. 1997. Vol. 39. Issue 4. P. 476–484.

11. Matveev Yu.I., Plashchina I.G. Effect of the degrees of polymerization of an enzyme and a substrate on the catalytic activity of the enzyme Polymer Science. Series A. 2012. Vol. 54. Issue 9. P. 718–723. https://doi.org/10.1134/S0965545X1208007X

12. Matveev Y.I., Grinberg V.Y., Tolstoguzov V.B. The plasticizing effect of water on proteins, polysaccharides and their mixtures. Glassy state of biopolymers food and seeds // Food Hydrocolloid. 2000. Vol. 14. Issue 5. P. 425–437. https://doi.org/10.1016/S0268-005X(00)00020-5

13. Колмогоров А.Н. К статистической теории кристаллизации металлов // Известия АН СССР. Серия математическая. 1937. Вып. 3. С. 355–359.

14. Buera M.P., Roos Y., Levine H., Slade L., Corti H.R., Reid D.S., et al. State diagrams for improving processing and storage of foods, biological materials, and pharmaceuticals (IUPAC Technical Report) // Pure and Applied Chemistry. 2011. Vol. 83. Issue 8. P. 1567–1617.

15. Чалых А.Е. Диффузия – метод исследования полимерных систем // Высокомолекулярные соединения. Серия С. 2001. Т. 43. N 12. С. 2304–2328.


Рецензия

Для цитирования:


Матвеев Ю.И., Аверьянова Е.В. Об агрегации в бинарных биополимерных системах. Известия вузов. Прикладная химия и биотехнология. 2020;10(2):223-231. https://doi.org/10.21285/2227-2925-2020-10-2-223-231

For citation:


Matveev Yu.I., Averyanova E.V. On aggregation in binary biopolymer systems. Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(2):223-231. https://doi.org/10.21285/2227-2925-2020-10-2-223-231

Просмотров: 357


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)