Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

On aggregation in binary biopolymer systems

https://doi.org/10.21285/2227-2925-2020-10-2-223-231

Abstract

The main structural protein of the human eye, which accounts for about 50 % of the mass of all water-soluble proteins comprising the lens, is α-crystallin. Alpha-crystallin functions as a molecular chaperone, preventing other lens crystallins from interfering in the vital activity. Alpha-crystallins partially or fully stabilise unfolded proteins, preventing the formation of deposits, helping to preserve the lens transparency and reducing the risk of a number of diseases, including cataracts. This biological phenomenon can be considered in the framework of materials science when considering the problem of slowing down the aging processes of polymers. In the present study, methods for slowing down the process of aggregation of α-lactalbumin in solution are considered, using the binary system α-lactalbumin–αA-crystallin as an example. To this end, experimental data on the rate of change of the aggregation process were formalised, i.e. expressed in terms of transition temperatures and plasticisation functions of the components. The proposed expressions make it possible to clarify the concentration dependence of the initial aggregation rate, its order, and also to quantify the effect of the dose of UV irradiation on the aging process of the system. The experimentally obtained result means that an increase in the content of α-crystallin leads to an additional blocking of hydrogen bonds in the surface layers of α-lactalbumin and, accordingly, to an increase in the plasticising effect. In addition, the obtained expression of the activation energy of polymer chain rearrangement helps to account for the influence of infrared radiation on the development of so-called thermal cataracts (usually occurring in glassblowers, steelmakers, blacksmiths, welders, etc.), when the etiological factor consist in infrared rays having wavelengths from 0.74 to 2.50 microns, which freely pass through the cornea and iris without damaging them, and are largely adsorbed by the lens, causing its overheating.

About the Authors

Yu. I. Matveev
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Russian Federation
Cand. Sci. (Physics and Mathematics), Senior Scientist,
 
4, Kosygin St., Moscow, 119334, Russian Federation



E. V. Averyanova
Biysk Technological Institute (branch) of the Altay State Technical University
Russian Federation
Cand. Sci. (Chemistry), Associate Professor, Department of Biotechnology

27, Geroi Sovetskogo Soyuza Trofimov St., Biysk, 659305, Russian Federation



References

1. Павлов М.Р., Николаев Е.В., Андреева Н.П., Барботько С.Л. К вопросу о методике оценки стойкости полимерных материалов к воздействию солнечного излучения (обзор) // Труды ВИАМ. 2016. N 7 (43). С. 98–112. https://doi.org/10.18577/2307-6046-2016-0-7-11-11 [Электронный ресурс]. URL: http://viamworks.ru/plugins/content/journal/uploads/articles/pdf/987.pdf

2. Tweeddale H.J., Hawkins C.L., Janmie J.F., Truscott R.J., Davies M.J. Cross-linking of lens crystallin proteins induced by tryptophan metabolites and metal ions: implications for cataract development // Free Radical Research. 2016. Vol. 50. Issue 10. P. 1116–1130. https://doi.org/10.1080/10715762.2016.1210802

3. Королева И.А., Егоров А.Е. Метаболизм хрусталика: особенности и пути коррекции // РМЖ. Клиническая офтальмология. 2015. Т. 15. N 4. С. 191–195.

4. Муранов К.О., Островский М.А. Молекулярная физиология и патология хрусталика глаза. М.: Торус Пресс, 2013. 295 с.

5. Borzova V.A., Markossian K.A., Muranov K.O., Polyansky N.B., Kleymenov S.Yu., Kurganov B.I. Quantification of anti-aggregation activity of UV-irradiated alpha-crystallin // International Journal of Biological Macromolecules. 2015;73:84–91. https://doi.org/10.1016/j.ijbiomac.2014.10.060

6. Bumagina Z.M., Gurvits B.Y., Artemova N.V., Muranov K.O., Yudin I.K., Kurganov B.I. Mechanism of suppression of dithiothreitolinduced aggregation of bovine alpha- lactalbumin by alpha-crystallin // Biophysical chemistry. 2010. Vol. 146. P. 108–117. https://doi.org/10.1016/j.bpc.2009.11.002

7. Borzova V.A., Markossian K.A., Kurganov B.I. Relationship between the initial rate of protein aggregation and the lag period for amorphous aggregation // International Journal of Biological Macromolecules. 2014. Vol. 68. P. 144–150. https://doi.org/10.1016/j.ijbiomac.2014.04.046

8. Глесстон С, Лейдлер К., Эйринг Г. Теория абсолютных скоростей реакций / пер. с англ. М.: Государственное издательство иностранной литературы, 1948. 584 с.

9. Matveyev Y.I., Askadskii A.A. Additive scheme for determining the activation energy of low temperature transitions in polymers // Polymer Science U.S.S.R. 1991. Vol. 33. Issue 6. P. 1154–1161. https://doi.org/10.1016/0032-3950(91)90221-B

10. Matveev Yu.I. Determination of the temperatures of transition into the state of viscous flow, denaturation, and the onset of intensive destruction of proteins with various structures // Polymer Science. Series A. 1997. Vol. 39. Issue 4. P. 476–484.

11. Matveev Yu.I., Plashchina I.G. Effect of the degrees of polymerization of an enzyme and a substrate on the catalytic activity of the enzyme Polymer Science. Series A. 2012. Vol. 54. Issue 9. P. 718–723. https://doi.org/10.1134/S0965545X1208007X

12. Matveev Y.I., Grinberg V.Y., Tolstoguzov V.B. The plasticizing effect of water on proteins, polysaccharides and their mixtures. Glassy state of biopolymers food and seeds // Food Hydrocolloid. 2000. Vol. 14. Issue 5. P. 425–437. https://doi.org/10.1016/S0268-005X(00)00020-5

13. Колмогоров А.Н. К статистической теории кристаллизации металлов // Известия АН СССР. Серия математическая. 1937. Вып. 3. С. 355–359.

14. Buera M.P., Roos Y., Levine H., Slade L., Corti H.R., Reid D.S., et al. State diagrams for improving processing and storage of foods, biological materials, and pharmaceuticals (IUPAC Technical Report) // Pure and Applied Chemistry. 2011. Vol. 83. Issue 8. P. 1567–1617.

15. Чалых А.Е. Диффузия – метод исследования полимерных систем // Высокомолекулярные соединения. Серия С. 2001. Т. 43. N 12. С. 2304–2328.


Review

For citations:


Matveev Yu.I., Averyanova E.V. On aggregation in binary biopolymer systems. Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(2):223-231. https://doi.org/10.21285/2227-2925-2020-10-2-223-231

Views: 380


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)