Cellulose hydrolysis by Trichoderma viride enzyme complex in the presence of sodium fluoride: effect of substrate structure and cellulase sorption activity
https://doi.org/10.21285/2227-2925-2020-10-2-261-273
Abstract
About the Authors
E. R. ChashinaRussian Federation
Master Student
1, Karl Marx St., Irkutsk, 664003, Russian Federation
Z. A. Efremenko
Russian Federation
Postgraduate Student
1, Karl Marx St., Irkutsk, 664003, Russian Federation
V. P. Salovarova
Russian Federation
Dr. Sci. (Biology), Professor, Head of the Department of Physico-Chemical Biology, Bioengineering and Bioinformatics
1, Karl Marx St., Irkutsk, 664003, Russian Federation
D. E. Gavrikov
Russian Federation
Cand. Sci. (Biology), Associate Professor, Department of Natural Sciences, Pedagogical Institute
1, Karl Marx St., Irkutsk, 664003, Russian Federation
A. A. Pristavka
Russian Federation
Cand. Sci. (Biology), Associate Professor, Department of Physico-Chemical Biology, Bioengineering and Bioinformatics
1, Karl Marx St., Irkutsk, 664003, Russian Federation
References
1. Kanitskaya LV, Kolmogorov AV. Impact of gas emissions from aluminum production on the environment. Uspekhi sovremennogo estestvoznaniya. 2009;8:17–18. (In Russian)
2. Evdokimova GA, Mozgova NP. Soil and plant pollution assessment in the zone of exposure to gas-air emissions from an aluminum smelter. Teoreticheskaya i prikladnaya ekologiya = Theoretical and Applied Ecolody. 2015;4:64-68. (In Russian) https://doi.org/10.25750/1995-4301-2015-4-064-068
3. Berseneva OA, Salovarova VР, Pristavka AA, Milentyev VA. Specific structure of the soil mycocenoses in grey forest soil of pribaikalye subject to influence of emissions of Irkutsk aluminium plant. Vestnik RUDN. Seriya Ekologiya i bezopasnost' zhiznedeyatel'nosti = RUDN Journal of Ecology and Life Safety. 2010;1:24–29. (In Russian)
4. Evdokimova GA, Korneykova MV, Lebedeva EV. Micromycete communities in soils in an aluminum smelter impact area. Mikologiya i Fitopatologiya = Mycology and Phytopathology. 2007;41(1):20–28. (In Russian)
5. Blagodatskaya EV, Semenov MV, Yakushev AV. Activity and biomass of soil microorganisms in changing environmental conditions. Moscow: Tovarishchestvo nauchnykh izdanii KMK; 2016. 243 p. (In Russian)
6. Katiyar P, Pandey N, Sahu KK. Biological approaches of fluoride remediation: potential for environmental clean-up. Environmental Science and Pollution Research. 2020;27:13044–13055. https://doi.org/10.1007/s11356-020-08224-2
7. Evdokimova GA, Zenkova IV, Mozgova NP. Soil and soil microbiota under fluorine pollution. Apatity: Kol'skii nauchnyi tsentr RAN; 2005. 135 p. (In Russian)
8. Makarova AP, Bukovskaja NE, Naprasnikova EV. The Impact of Aerotechnogenic Emissions from Aluminum Smelters in the Irkutsk Region on the Soil Microbiota. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Biologiya. Ecologiya = The Bulletin of Irkutsk State University. Series Biology. Ecology. 2017;19:57–62. (In Russian)
9. Gornostaeva EA, Fuks SL. The effect of fluorinated compounds on living organisms (review). Teoreticheskaya i prikladnaya ekologiya = Theoretical and Applied Ecolody. 2017;1:14–24. (In Russian)
10. Pristavka AA, Popova IV. Influence of sodium fluoride on enzymatic activity of fungal cellulases. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2015;1:36–46. (In Russian)
11. Klyosov AA, Rabinowitch ML, Sinitsyn AP, Churilova IV, Grigorash SYu. Enzymatic hydrolysis of cellulose. I. Activity and composition of cellulase complexes from various sources. Bioorganicheskaya Khimiya = Russian Journal of Bioorganic Chemistry. 1980;6(8):1225–1242. (In Russian)
12. Sinitsyn AP, Osipov DO, Rozhkova AM, Bushina EV, Dotsenko GS, Sinitsyna OA, et al. The production of highly effective enzyme complexes of cellulases and hemicellulases based on the Penicillium verruculosum strain for the hydrolysis of plant raw materials. Applied Biochemistry and Microbiology. 2014;50(8):761–772. https://doi.org/10.1134/S0003683814080055
13. Beheraa BC, Sethib BK, Mishra RR, Dutta SK, Thatoi HN. Microbial cellulases – Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology. 2017;15(1):197–210. https://doi.org/10.1016/j.jgeb.2016.12.001
14. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K. On the determination of crystallinity and cellulose content in plant fibres. Cellulose. 2005;12(6):563–576. https://doi.org/10.1007/s10570-005-9001-8
15. Kaschuk JJ, Frollini E. Effects of average molar weight, crystallinity, and hemicelluloses content on the enzymatic hydrolysis of sisal pulp, filter paper, and microcrystalline cellulose. Industrial Crops and Products. 2018;15:280–289. https://doi.org/10.1016/j.indcrop.2018.02.011
16. Ahvenainen P, Kontro I, Svedström K. Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose. 2016;23(2):1073–1086. https://doi.org/10.1007/s10570-016-0881-6
17. Ioelovich MYa. Models of supramolecular structure and properties of cellulose. Vysokomolekulyarnye soedineniya, Seriya A. = Polymer Science, Series A. 2016;58:925–943. (In Russian) https://doi.org/10.1134/S0965545X16060109
18. Ghose TK. Measurement of cellulase activity. Pure and Applied Chemistry. 1987;59:257–268. https://doi.org/10.1351/pac198759020257
19. Rabinowitch ML, Klyosov AA, Berezin IV. Kinetics of the action of cellulolytic enzymes from Geotrihum candidum. Viscometric analysis of the kinetics of carboxymethyl cellulose hydrolysis. Bioorganicheskaya khimiya = Russian Journal of Bioorganic Chemistry 1977;З(3):405–414. (In Russian)
20. Klyosov AA, Mitkevich OV, Sinitsyn AP. Role of the activity and adsorption of cellulases in the efficiency of the enzymic hydrolysis of amorphous and crystalline cellulose. Biochemistry. 1986:25(3):540–542 https://doi.org/10.1021/bi00351a003
21. Saloheimo M, Nakari-Setälä T, Tenkanen M, Penttilä M. cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. European Journal of Biochemistry. 1997;249(2):584–591. https://doi.org/10.1111/j.1432-1033.1997.00584.x
22. Pristavka AA, Salovarova VP, Zacchi G, Berezint IV, Rabinovich ML. Enzyme Recovery in High-Solids Enzymatic Hydrolysis of SteamPretreated Willow: Requirements for the Enzyme Composition. Applied Biochemistry and Microbiology. 2000;36(3):237–244. https://doi.org/10.1007/BF02742572
23. Aghajari N, Feller G, Gerday C, Haser R. Structural basis of α-amylase activation by chloride. Protein Science. 2002;11(6):1435–1441. https://doi.org/10.1110/ps.0202602 ·
24. Linder M, Mattinen ML, Kontteli M, Lindeberg G, Stihlberg J, Drakenberg T., et al. Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Science. 1995;4(6):1056–1064. https://doi.org/10.1002/pro.5560040604
25. Evdokimova GA, Mozgova NP, Pereverzev VN. Transformation of plant residues in the soil of a zone exposed to emissions from an aluminum smelter. Eurasian Soil Science. 2013;46(8):908–917. https://doi.org/10.1134/S1064229313060033
Review
For citations:
Chashina E.R., Efremenko Z.A., Salovarova V.P., Gavrikov D.E., Pristavka A.A. Cellulose hydrolysis by Trichoderma viride enzyme complex in the presence of sodium fluoride: effect of substrate structure and cellulase sorption activity. Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(2):261-273. (In Russ.) https://doi.org/10.21285/2227-2925-2020-10-2-261-273