Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

Влияние автогидролитической обработки Miscanthus sacchariflorus Andersson на выход редуцирующих веществ при последующем ферментолизе

https://doi.org/10.21285/2227-2925-2020-10-2-303-313

Аннотация

Определено влияние автогидролитической обработки Miscanthus sacchariflorus Andersson на выход редуцирующих веществ при последующем ферментолизе. Установлено, что при изменении условий автогидролитической обработки Miscanthus sacchariflorus Andersson образуются твердые фракции, содержащие целлюлозу, лигнин, гемицеллюлозу и минеральные вещества, соотношение которых зависит от фактора жесткости – температуры и продолжительности обработки. Показано, что при факторе жесткости 5,67 происходит практически полный гидролиз гемицеллюлозы, однако наблюдается увеличение содержания лигнина в твердой фракции до 46,0 % относительно содержания лигнина в исходном сырье (20,8 %), что обусловлено конденсацией лигнина с образованием псевдолигнина. Наибольшее содержание целлюлозы в твердой фазе наблюдается при  гидролитической обработке сырья с фактором жесткости от 4,17 до 4,39, температуре от 160 оС и продолжительности обработки 25 мин. На фоне повышения температуры увеличение кислотности среды катализирует гидролиз целлюлозы и снижает ее содержание в твердой фракции до 60 % при факторе жесткости 5,67. При автогидролитической обработке Miscanthus sacchariflorus Andersson наблюдается повышение зольности в твердой фракции. Полученные после обработки Miscanthus sacchariflorus Andersson твердые фракции использовались в качестве субстрата и были подвергнуты ферментативному гидролизу ферментными препаратами «Целлолюкс-А» и «Брюзайм BGX» при начальной концентрации субстрата 33 г/л. Повышение выхода редуцирующих веществ имеет устойчивый рост по мере удаления гемицеллюлоз и достигает максимального значения (45,1 %) при увеличении фактора жесткости обработки до 4,48. Доступность поверхности целлюлозы для действия ферментов при повышении фактора жесткости свыше 4,48 снижается вследствие накопления лигнина в твердой фазе, о чем свидетельствует снижение выхода редуцирующих веществ в ферментализате до 31,8 %.

Об авторе

И. Н. Павлов
Институт проблем химико-энергетических технологий Сибирского отделения Российской академии наук
Россия

к.т.н., доцент, старший научный сотрудник

659322, г. Бийск, ул. Социалистическая, 1, Российская Федерация



Список литературы

1. Гладышева Е.К., Голубев Д.С., Скиба Е.А. Исследование биосинтеза бактериальной наноцеллюлозы продуцентом Мedusomyces gisevii Sa-12 на ферментативном гидролизате продукта щелочной делигнификации мискантуса // Известия вузов. Прикладная химия и биотехнология. 2019. Т. 9. N 2. С. 260–269. https://doi.org/10.21285/2227-2925-2019-9-2-260-269

2. Kashcheyeva E.I., Gismatulina Y.A., Budaeva V.V. Pretreatments of non-woody cellulosic feedstocks for bacterial cellulose synthesis // Polymers. 2019. Vol. 11. Issue 10. P. 1645. https://doi.org/10.3390/polym11101645

3. Байбакова О.В., Влияние предварительной обработки энергетической культуры мискантуса на выход биоэтанола // Известия вузов. Прикладная химия и биотехнология. 2018. Т. 8. N 3. С. 79–84. https://doi.org/10.21285/2227-2925-2018-8-3-79-84

4. Mahmood H., Moniruzzaman M., Iqbal T., Khan M.J. Recent advances in the pretreatment of lignocellulosic biomass for biofuels and valueadded products // Current Opinion in Green and Sustainable Chemistry. 2019. Vol. 20. P. 18–24. https://doi.org/10.1016/j.cogsc.2019.08.001

5. Bychkov A.L., Podgorbunskikh E.M., Ryabchikova E.I., Lomovsky O.I. The role of mechanical action in the process of the thermome-chanical isolation of lignin // Cellulose. 2018. Vol. 25. Issue 1. P. 1–5. https://doi.org/10.1007/s10570-017-1536-y

6. Jiang K., Li L., Long L., Ding S. Comprehensive evaluation of combining hydrothermal pretreatment (autohydrolysis) with enzymatic hydrolysis for efficient release of monosaccharides and ferulic acid from corn bran // Industrial Crops and Products. 2018. Vol. 113. P. 348–357. https://doi.org/10.1016/j.indcrop.2018.01.047

7. Jiang W., Chang S., Qu Y., Zhang Z., Xu J. Changes on structural properties of biomass pretreated by combined deacetylation with liquid hot water and its effect on enzymatic hydrolysis // Bioresource Technology. 2016. Vol. 220. P. 448–456. https://doi.org/10.1016/j.biortech.2016.08.087

8. Gu B.-J., Dhumal G.S., Wolcott M.P., Ganjyal G.M. Disruption of lignocellulosic biomass along the length of the screws with different screw elements in a twin-screw extruder // Bioresource Technology. 2019. Vol. 275, P. 266–271. https://doi.org/10.1016/j.biortech.2018.12.033

9. Lyu H., Zhou J., Geng Z., Lyu C., Li Y. Two-stage processing of liquid hot water pretreatment for recovering C5 and C6 sugars from cassava straw // Process Biochemistry. 2018. Vol. 75. P. 202–211. https://doi.org/10.1016/j.procbio.2018.10.003

10. Cardona E., Llano B., Penuela M., Juan Pena J., Rios L.A. Liquid-hot-water pretreatment of palm-oil residues for ethanol production: An economic approach to the selection of the processing conditions // Energy. 2018. Vol. 160. P. 441–451. https://doi.org/10.1016/j.energy.2018.07.045

11. Da Costa R.M.F., Pattathil S., Avci U., Winters A., Hahn M.G., Bosch M. Desirable plant cell wall traits for higher-quality miscanthus lignocellulosic biomass // Biotechnology for Biofuels. 2019. Vol. 12. Issue 1. Article:85. 18 p. https://doi.org/10.1186/s13068-019-1426-7

12. Pavlov I.N., Denisova M.N., Makarova E.I., Budaeva V.V., Sakovich G.V. Versatile thermobaric setup and production of hydrotropic cellulose therein // Cellulose Chemistry and Technology. 2015. Vol. 49. Issue 9-10. P. 847–852

13. Batista G.O., Souza R.B.A., Pratto B., Dos Santos-Rocha M.S.R, Cruz A.J.G. Effect of severity factor on the hydrothermal pretreatment of sugarcane straw // Bioresource Technology. 2019. Vol. 275. P. 321–327. https://doi.org/10.1016/j.biortech.2018.12.073

14. Sabanci K., Buyukkileci A.O. Comparison of liquid hot water, very dilute acid and alkali treatments for enhancing enzymatic digestibility of hazelnut tree pruning residues // Bioresource Technology. 2018. Vol. 261. P. 158–165. https://doi.org/10.1016/j.biortech.2018.03.136

15. Кащеева Е.И., Будаева В.В. Определение реакционной способности к ферментативному гидролизу целлюлозосодержащих субстратов // Заводская лаборатория. Диагностика материалов. 2018. Т. 84. N 10. С. 5–11. https://doi.org/10.26896/1028-6861-2018-84-10-5-11

16. Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar // Analytical Chemistry. 1959. Vol. 31. N 3. P. 426–428. https://doi.org/10.1021/ac60147a030

17. Michelin M., Teixeira J.A. Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof // Bioresource Technology. 2016. Vol. 216. P. 862–869. https://doi.org/10.1016/j.biortech.2016.06.018

18. Moniz P., Pereira H., Duarte L.C., Carvalheiro F. Hydrothermal production and gel filtration purification of xylo-oligosaccharides from rice straw // Industrial Crops and Products. 2014. Vol. 62. P. 460–465. https://doi.org/10.1016/j.indcrop.2014.09.020

19. Liu L., Liu W., Hou Q., Chen J., Xu N. Understanding of pH value and its effect on autohydrolysis pretreatment prior to poplar chemithermomechanical pulping // Bioresource Technology. 2015. Vol. 196. P. 662–667. https://doi.org/10.1016/j.biortech.2015.08.034

20. Podgorbunskikh E.M., Ryabchikova E.I., Bychkov A.L., Lomovskii O.I. Changes in structure of cell wall polymers in thermomechanical treatment of highly lignified plant feedstock // Doklady Physical Chemistry. 2017. Vol. 473. Issue 1. P. 49–51. https://doi.org/10.1134/S0012501617030046

21. Ko J.K., Kim Y., Ximenes E., Ladisch M.R. Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose // Biotechnology and Bioengineering. 2015. Vol. 112. Issue 2. P. 252–262. https://doi.org/10.1002/bit.25349

22. Gan S., Zakaria S., Chen R.S., Chia C.H., Padzil F.N.M., Moosavi S. Autohydrolysis processing as an alternative to enhance cellulose solubility and preparation of its regenerated biobased materials // Materials Chemistry and Physics. 2017. Vol. 192. P. 181–189. https://doi.org/10.1016/j.matchemphys.2017.01.012

23. Zhu R., Yadama V. Effects of hot water extraction pretreatment on physicochemical changes of Douglas fir // Biomass and Bioenergy. 2016. Vol. 90. P. 78–89. https://doi.org/10.1016/j.biombioe.2016.03.028

24. Chena T.-Y., Wena J.-L., Wanga B., Wanga H.-M., Liub C.-F., Suna R.-C. Assessment of integrated process based on autohydrolysis and robust delignification process for enzymatic saccharification of bamboo // Bioresource Technology. 2017. Vol. 244. P. 717–725. https://doi.org/10.1016/j.biortech.2017.08.032


Рецензия

Для цитирования:


Павлов И.Н. Влияние автогидролитической обработки Miscanthus sacchariflorus Andersson на выход редуцирующих веществ при последующем ферментолизе. Известия вузов. Прикладная химия и биотехнология. 2020;10(2):303-313. https://doi.org/10.21285/2227-2925-2020-10-2-303-313

For citation:


Pavlov I.N. Effect of the autohydrolytic treatment of Miscanthus sacchariflorus Andersson on the yield of the reducing substances during the subsequent fermentolysis. Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(2):303-313. (In Russ.) https://doi.org/10.21285/2227-2925-2020-10-2-303-313

Просмотров: 418


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)