Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

OPTIMIZATION OF WHEAT STRAW ULTRASOUND PROCESSING IN THE ENVIRONMENT OF 1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE

https://doi.org/ 10.21285/2227-2925-2017-7-2-105-112

Abstract

Heat treatment of wheat straw biomass in the environment of 1-butyl-3-methylimidazolium chloride is executed at temperatures of 80, 100, 120 and 140 °C using ultrasonic frequency of 44 kHz and a power of 10, 30 and 50 W. Cellulose, hemicellulose and lignin were isolated from straw after treatment. The resulting fractions of polysaccharides were subjected to enzymatic hydrolysis using preparation Tsellolyuks A. The change of the mass concentration of sugars yielded in the enzymatic conversion of straw polysaccharides depending on the heat treatment process factors (temperature, duration and power) was investigated to optimize the heat treatment process by mathematical modeling using Design-Expert 8.0.5.2 program. The temperature of 103 °C, processing duration of 5 minutes and the power of 48.5 W were found to be optimum conditions for the maximum yield of sugars. The discrepancy between the predicted and experimentally obtained sugar yield was 1.8% that confirms the validity of the received model.

About the Authors

Hoang Quang Cuong
Irkutsk National Research Technical University
Russian Federation


S. N. Evstaf’Ev
Irkutsk National Research Technical University
Russian Federation


References

1. Brandt A., Ray M. J., To T. Q., Leak D. J., Murphy R. J., Welton, T. Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures // Green Chemistry. 2011. V. 13, N 9. P. 2489-2499.

2. Zhang Z-G, Chen H-Z. Enhancement of the enzymatic hydrolysis of wheat straw by pretreatment with 1-allyl-3-methylimidazolium chloride ([Amim]Cl) // African Journal of Biotechnology. 2012. V. 11, N 31. P. 8032-8037.

3. Nawshad M., Zakaria M., Mohamad Azmi, B. K. Ionic liquid-a future solvent for the enhanced uses of wood biomass // Eur. J. Wood Prod. 2012. V. 70. P. 125-133.

4. Tang A. M., Zhang H. W., Chen G., Xie G. H., Liang W. Z. Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose // Ultrasonics Sonochemistry. 2005. V. 12, N 6. P. 467-472.

5. Gadhe J. B., Gupta R. B., Elder T. Surface modification of lignocellulosic fibers using high-frequency ultrasound // Cellulose. 2006. V. 13. P. 9-22. DOI: 10.1007/s10570-005-9018-z.

6. Aliyu M., Hepher M. J. Effects of ultrasound energy on degradation of cellulose material // Ultrasonics Sonochemistry. 2000. V. 7, N 4. P. 265-268.

7. Mikkola J.P., Kirilin A., Tuuf J.C., Pranovich A., Holmbom B., Kustov L.M., Murzin D.Y., Salmi T. Ultrasound enhancement of cellulose processing in ionic liquids: From dissolution towards functionalization // Green Chemistry. 2007. V. 9, N 11. P. 1229-1237.

8. Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D. Dissolution of cellulose with ionic liquids // Journal of the American Chemical Society. 2002. V. 12, N 18. P. 4974-4975.

9. Mohan P.R., Kumar B.V., Reddy O.V.S. Optimization of pretreatment conditions for increased cellulose conversion of sugarcane bagasse using peracetic acid employing central composite design // Songklanakarin J. Sci. Technol. 2013. V. 35 , N 2. P. 177-185.

10. Qiu Z.G.M. Aita S.M. Optimization by response surface methodology of processing conditions for the ionic liquid pretreatment of energy cane bagasse // J. Chem. Technol. Biotechnol. 2014. V. 89, N 5. P. 682-689. DOI:10.1002/jctb.4167.

11. Anupama M.P., Mahesh D.G., Ayyanna C. Optimization of fermentation medium for the production of Ethanol from Jaggery using box-behnken design // International Journal of Applied Biology and Pharmaceutical Technology. 2010. V. 1. P. 34-45.

12. Fang H., Zhao C., Song X. Optimization of enzymatic hydrolysis of steam-exploded corn stover by two approaches: Response surface methodology or using cellulase from mixed cultures of Trichoderma reesei RUT- C30 and Aspergillus niger NL02 // Bioresource Technology. 2010. V. 101, N 11. P. 4111-4119.

13. Tian S., Wang Z., Fan Z., Zuo L. Optimization of CO2 laser-based pre-treatment of corn stover using response surface methodology // Bioresource Technology. 2011. V. 102, N 22. P. 10493-10497.

14. Евстафьев С.Н., Хоанг К.К. Влияние условий обработки на выход и состав продуктов фракционирования соломы пшеницы в среде хлорида 1-бутил-3-метилимидазолия // Химия растительного сырья. 2016. N 4. С. 27-34. DOI: 10.14258/jcprm.2016041308.

15. Dubois M., Gilles K.A. Colorimetric method for determination of sugars and related substances // Analyt. Chem. 1956. V. 28. P. 350-356.

16. Ахназарова С.Л., Кафаров В.В. Методы оптимизации эксперимента в химической технологии. М.: Высш. шк., 1985. 327 с.

17. Draper N.R., Smith H. Applied Regression Analysis. Third Edition. New Jersey, John Wiley & Sons, 1998, 736 p.

18. Frees E.W. Regression modeling with actuarial and financial applications. New York: Cambridge University Press, 2009. 584 p.

19. Floudas C.A., Paralos P.M. Encyclopedia of optimization. Second Edition. New York: Springer, 2008. 4622 p.


Review

For citations:


Hoang Quang Cuong , Evstaf’Ev S.N. OPTIMIZATION OF WHEAT STRAW ULTRASOUND PROCESSING IN THE ENVIRONMENT OF 1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE. Proceedings of Universities. Applied Chemistry and Biotechnology. 2017;7(2):105-112. (In Russ.) https://doi.org/ 10.21285/2227-2925-2017-7-2-105-112

Views: 197


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)