Влияние содержания цеолита на протонную проводимость и технические характеристики мембран на основе сшитого поливинилового спирта
https://doi.org/10.21285/2227-2925-2020-10-2-360-367
Аннотация
Об авторах
А. Н. ЧесноковаРоссия
к.х.н., заведующая лабораториями
664074, г. Иркутск, ул. Лермонтова, 83, Российская Федерация
Т. Д. Жамсаранжапова
Россия
магистрант
664074, г. Иркутск, ул. Лермонтова, 83, Российская Федерация
С. А. Закарчевский
Россия
аспирант
664074, г. Иркутск, ул. Лермонтова, 83, Российская Федерация
В. Кулшреста
Индия
к.х.н., старший научный сотрудник
364002, г. Бхавнагар, Гиджубхай Бадхека Марг, Индия
С. А. Скорникова
Россия
к.х.н., доцент
664074, г. Иркутск, ул. Лермонтова, 83, Российская Федерация
С. С. Макаров
Россия
магистрант
664074, г. Иркутск, ул. Лермонтова, 83, Российская Федерация
Ю. Н. Пожидаев
Россия
д.х.н., профессор
664074, г. Иркутск, ул. Лермонтова, 83, Российская Федерация
Список литературы
1. Maiti J, Kakati N, Lee SH, Jee SH, Viswanathan B, Yoon YS. Where do poly(vinyl alcohol) based membranes stand in relation to Nafion® for direct methanol fuel cell applications. Journal of Power Sources. 2012;216:48–66. https://doi.org/10.1016/j.jpowsour.2012.05.057
2. Dhanapal D, Xiao M, Wang S, Meng Y. A Review on sulfonated polymer composite/organicinorganic hybrid membranes to address methanol barrier issue for methanol fuel cells. Nanomaterials. 2019;9:668. https://doi.org/10.3390/nano9050668
3. Wong CY, Wong WY, Loh KS, Daud WRW, Lim KL, Khalid M., et al. Development of development of poly(vinyl alcohol)-based polymers as proton exchange membranes and challenges in fuel cell application: A Review. Polymer Reviews. 2019;60(1):171–202. https://doi.org/10.1080/15583724.2019.1641514
4. Ghorbel N, Kallel A, Boufi S, Molecular dynamics of poly(vinyl alcohol)/cellulose nanofibrils nanocomposites highlighted by dielectric relaxation spectroscopy. Composites Part A Applied Science and Manufacturing. 2019;124:105465. https://doi.org/10.1016/j.compositesa.2019.05.033
5. Oliveira PN, Catarino M, Müller CMO, Brandão L, Tanaka DAP, Bertolino JR, et al. Preparation and characterization of crosslinked PVAL membranes loaded with boehmite nanoparticles for fuel cell applications. Journal of Applied Polymer Science. 2013;131:40148. https://doi.org/10.1002/app.40148
6. Tutgun MS, Sinirlioglu D, Celik SU, Bozkurt A. Investigation of nanocomposite membranes based on crosslinked poly(vinyl alcohol)– sulfosuccinic acid ester and hexagonal boron nitride. Journal of Polymer Research. 2015;22(4).Article number 47; 11 p. https://doi.org/10.1007/s10965-015-0678-6
7. Kakati N, Das G Yoon Y-S. Protonconducting membrane based on epoxy resinpoly(vinyl alcohol)-sulfosuccinic acid blend and its nanocomposite with sulfonated multiwall carbon nanotubes for fuel-cell application. Journal of the Korean Physical Society. 2016;68:311–316. https://doi.org/10.3938/jkps.68.311
8. Tomas M., Tomáš R, Gholami F. The determination of effective diffusion coefficient from the electrochemical impedance spectra of composite poly (vinyl alcohol) membranes. Environmental Progress and Sustainable Energy. 2019;38(5):13195. https://doi.org/10.1002/ep.13195
9. Ajith C, Deshpande AP, Varughese S. Proton conductivity in crosslinked hydrophilic ionic polymer system: Competitive hydration, crosslink heterogeneity, and ineffective domains. Journal of Polymer Science. Part B: Polymer Physics. 2016;54 (11):1087–1101. https://doi.org/10.1002/polb.24012
10. Li HQ, Liu XJ, Wang H, Yang H, Wang ZZ, He J. Proton exchange membranes with cross-linked interpenetrating network of sulfonated polyvinyl alcohol and poly(2- acrylamido-2-methyl-1-propanesulfonic acid): Excellent relative selectivity. Journal of Membrane Science. 2020;595:117511. https://doi.org/10.1016/j.memsci.2019.117511
11. Zhou T, Li Y, Wang WW, He L, Cai L, Zeng C. Application of a novel PVA-based proton exchange membrane modified by reactive black KN-B for low-temperature fuel cells. International Journal of Electrochemical Science. 2019;14:8514–8531. https://doi.org/10.20964/2019.09.16
12. Boroglu MS, Çelik SÜ, Bozkurt A, Boz I. The synthesis and characterization of anhydrous proton conducting membranes based on sulfonated poly(vinyl alcohol) and imidazole. Journal of Membrane Science. 2011;375(1-2):157–164. https://doi.org/10.1016/memsci.2011.03.041
13. Kim DS, Park HB, Rhim JW, Lee YM. Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. Journal of Membrane Science. 2004;240(1):37–48. https://doi.org/10.1016/j.memsci.2004.04.010
14. Tripathi BP, Shahi VK. Functionalized organic-inorganic nanostructured N-p- carboxy benzyl chitosan-silica-PVA hybrid polyelectrolyte complex as proton exchange membrane for DMFC applications. The Journal of Physical Chemistry B. 2008;112:15678–15690. https://doi.org/10.1021/jp806337b
15. Beydaghi H, Javanbakht M, Badiei A. Cross-linked poly(vinyl alcohol)/sulfonated nanoporous silica hybrid membranes for proton exchange membrane fuel cell. Journal of Nanostructure in Chemistry. 2014;4. Article number 97. https://doi.org/10.1007/s40097-014-0097-y
16. Navarra MA, Fernicola A, Panero S, Martinelli AA, Matic A. Effect of functionalized silica particles on cross-linked poly(vinyl alcohol) proton conducting membranes. Journal of Applied Electrochemistry. 2008;38(7):931–938. https://doi.org/10.1007/s10800-008-9498-2
17. Lebedeva OV, Pozhidaev YuN, Malakhova EA, Raskulova TV, Chesnokova AN, Kulshrestha V, et al. Sodium p-styrene sulfonate-1-vinylimidazole copolymers for acid-base protonexchange membranes. Membranes and Membrane Technologies. 2020;2:76–84. https://doi.org/10.1134/S2517751620020079
18. Rodionova LI, Knyazeva EE Konnov SV, Ivanova II. Application of nanosized zeolites in petroleum chemistry: synthesis and catalytic properties. Petroleum Chemistry. 2019;59:455–470. https://doi.org/10.1134/S096554419040133
19. Marcos-Madrazo A, Casado-Coterillo C, García-Cruz L, Iniesta J, Simonelli L, Sebastián V, et al. Preparation and identification of optimal synthesis conditions for a novel alkaline anionexchange membrane. Polymers. 2018;10(8):913. https://doi.org/10.3390/polym10080913
20. Gahlot S, Sharma PP, Kulshrestha V, Jha PK. SGO/SPES-based highly conducting polymer electrolyte membranes for fuel cell application. ACS Applied Materials and Interfaces. 2014;6(8): 5595−5601. https://doi.org/10.1021/am5000504
Рецензия
Для цитирования:
Чеснокова А.Н., Жамсаранжапова Т.Д., Закарчевский С.А., Кулшреста В., Скорникова С.А., Макаров С.С., Пожидаев Ю.Н. Влияние содержания цеолита на протонную проводимость и технические характеристики мембран на основе сшитого поливинилового спирта. Известия вузов. Прикладная химия и биотехнология. 2020;10(2):360-367. https://doi.org/10.21285/2227-2925-2020-10-2-360-367
For citation:
Chesnokov A.N., Zhamsaranzhapova T.D., Zakarchevskiy S.A., Kulshrestha V., Skornikova S.A., Makarov S.S., Pozhidaev Yu.N. Effect of zeolite content on proton conductivity and technical characteristics of the membranes based on crosslinked polyvinyl alcohol. Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(2):360-367. (In Russ.) https://doi.org/10.21285/2227-2925-2020-10-2-360-367