Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

Исследование потенциальных антиканцерогенных и антиоксидантных эффектов экстрактов из растительного сырья

https://doi.org/10.21285/2227-2925-2020-10-4-613-626

Аннотация

Одним из основных этиологических факторов возникновения некоторых видов злокачественных опухолей является наличие в организме хронических воспалительных процессов. В ряде медицинских исследований для противовоспалительных лекарственных средств показан антиканцерогенный эффект относительно рака толстого кишечника. Кроме того, имеются данные о взаимосвязи антиканцерогенной и антиоксидантной активностей некоторых биологически активных веществ, присутствующих в лекарственных растениях. В настоящей работе исследованы потенциальные антиканцерогенные эффекты экстрактов, полученных из растительного сырья: брусники (Vaccmium vftis-idaea), малины (Rubus idaeus), черноплодной рябины (Aronia melanocarpa), семян винограда (Vitis L.), выжимок винограда^№ L.), зеленого краснодарского чая (Camellia sinensis), женьшеня (Panax L.), иван-чая (Chamaenerion angustifolium) и кофе (Coffea arabica). Оценено влияние данных экстрактов на рост и жизнеспособность клеток рака толстого кишечника линии НСТ-116 in vitro с помощью МТТ-теста, а также влияние нетоксических доз экстрактов на базальный и индуцированный уровень экспрессии провоспалительных генов: циклооксигеназы (COX2); индуцируемой NO-синтазы (iNOS); интерлейкина 8 (IL8), методом количественной полимеразной цепной реакции. Определены рабочие концентрации исследуемых экстрактов для клеток НСТ-116. Продемонстрировано, что все исследуемые экстракты способны снижать экспрессию провоспалительных генов COX-2, iNOS и IL-8. Наиболее выраженным суммарным ингибирующим действием на экспрессию данных генов обладают экстракты черноплодной рябины и иван-чая. Данные экстракты рекомендуется использовать в дальнейших исследованиях влияния на индуцированную экспрессию генов COX-2, iNOS и IL-8, а также в исследованиях антиканцерогенной активности in vivo. Антиокисдантная активность определена по методу DPPH и FRAP. Наибольшие значения по данным методикам показали экстракты черноплодной рябины, малины и иван-чая. Выявлена зависимость антиканцерогенной и антиоксидантной активностей.

Об авторах

Н. Б. Еремеева
Самарский государственный технический университет
Россия

Еремеева Наталья Борисовна - кандидат технических наук, доцент кафедры технологии и организации общественного питания.

443100, Самара, ул. Молодогвардейская, 244



Н. В. Макарова
Самарский государственный технический университет
Россия

Макарова Надежда Викторовна - доктор химических наук, профессор, заведующая кафедрой технологии и организации общественного питания.

443100,  Самара, ул. Молодогвардейская, 244



Д. Ф. Игнатова
Самарский государственный технический университет
Россия

Игнатова Динара Фанисовна - кандидат технических наук, доцент кафедры технологии и организации общественного питания, Самарский государственный технический университет,

443100, Самара, ул. Молодогвардейская, 244



В. В. Бахарев
Самарский государственный технический университет
Россия

Бахарев Владимир Валентинович - доктор химических наук, профессор, декан факультета пищевых производств.

443100, Самара, ул. Молодогвардейская, 244



Список литературы

1. Jupp P.W. A complex systems approach to cancer prevention // Medical Hypotheses. 2018. Vol. 112. P. 18-23. https://doi.org/10.1016/j.mehy.2018.01.006

2. Bail J., Meneses K., Demark-Wahnefried W. Nutritional status and diet in cancer prevention // Seminars in Oncology Nursing. 2016. Vol. 32. Issue 3. P. 206-214. https://doi.org/10.1016/j.soncn.2016.05.004

3. Жестовская Е.С., Антохин А.М., Таранчен-ко В.Ф., Василевский С.В., Аксенов А.В., Аксенова Ю.Б., [и др.]. Исследование компонентного состава лекарственного растительного сырья методом газовой хроматографии с масс-спектрометрическим детектированием // Химия растительного сырья. 2018. N 3. С. 149-157 https://doi.org/10.14258/jcprm.2018033433

4. Greenlee H. Natural products for cancer prevention // Seminars in Oncology Nursing. 2012. Vol. 28. Issue 1. P. 29-44. https://doi.org/10.1016/j.soncn.2011.11.004

5. Sae-leaw T., Benjakul S. Prevention of melanosis in crustaceans by plant polyphenols: A review // Trends in Food Science & Technology. 2019. Vol. 85. P. 1-9. https://doi.org/10.1016/j.tifs.2018.12.003

6. Curti V., di Lorenzo A., Dacrema M., Xiao J., Nabavi S.M., Daglia M. In vitro polyphenol effects on apoptosis: an update of literature data // Seminars in Cancer Biology. 2017. Vol. 46. P. 119-131. https://doi.org/10.1016/j.semcancer.2017.08.005

7. Gali-Muhtasib H., Hmadi R., Kareh M., Tohme R., Darwiche N. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis // Apoptosis. 2015. Vol. 20. Issue 12. P. 1531-1562. https://doi.org/10.1007/s10495-015-1169-2

8. Dayem A.A., Choi H.Y., Yang G.-M., Kim K., Saha S.K., Cho S.-G. The anticancer effect of polyphenols against breast cancer and cancer stem cells: molecular mechanisms // Nutrients. 2016. Vol. 8. Issue 9. P. 581. https://doi.org/10.3390/nu8090581

9. Lewandowska H., Kalinowska M., Lewandowski W., Stepkowski T.M., Brzoska K. The role of natural polyphenols in cell signaling and cytoprotec-tion against cancer development // The Journal of Nutritional Biochemistry. 2016. Vol. 32. P. 1-19. https://doi.org/10.1016/j.jnutbio.2015.11.006

10. Li W., Guo Y., Zhang C., Wu R., Yang A.Y., Gaspar J., et al. Dietary phytochemicals and cancer chemoprevention: a perspective on oxidative stress, inflammation, and epigenetics // Chemical Research in Toxicology. 2016. Vol. 29. Issue 12. P. 2071-2095. https://doi.org/10.1021/acs.chemrestox.6b00413

11. Wu J.C., Lai C.S., Lee P.S., Ho C.T., Liou W.S., Wang Y.J., et al. Anti-cancer efficacy of dietary polyphenols is mediated through epigenetic modifications // Current Opinion in Food Science. 2016. Vol. 8. P. 1-7. https://doi.org/10.1016/j.cofs.2016.01.009

12. Di Leo N., Battaglini M., Berger L., Giannac-cini M., Dente L., Hampel S., et al. A catechin nanoformulation inhibits WM266 melanoma cell proliferation, migration and associated neoangiogenesis // European Journal of Pharmaceutics and Biopharmaceutics. 2017. Vol. 114. P. 1-10. https://doi.org/10.1016/j.ejpb.2016.12.024

13. Morbidelli L. Polyphenol-based nutraceuticals for the control of angiogenesis: analysis of the critical issues for human use // Pharmacological Research. 2016. Vol. 111. P. 384-393. https://doi.org/10.1016/j.phrs.2016.07.011

14. Amani H., Ajami M., Nasseri Maleki S., Pazoki-Toroudi H., Daglia M., Tsetegho Sokeng A.J., et al. Targeting signal transducers and activators of transcription (STAT) in human cancer by dietary polyphenolic antioxidants // Biochimie. 2017. Vol. 142. P. 6379. https://doi.org/10.1016/j.biochi.2017.08.007

15. Omidian K., Rafiei H., Bandy B. Polyphenol inhibition of benzo[a]pyrene-induced oxidative stress and neoplastic transformation in an in vitro model of carcinogenesis // Food and Chemical Toxicology. 2017. Vol. 106 (Pt. A). P. 165-174. https://doi.org/10.1016/j.fct.2017.05.037

16. Mahendran G., Ponnuchamy K. Coumaringold nanoparticle Coumarin-gold nanoparticle bioconjugates: preparation, antioxidant, and cytotoxic effects against MCF-7 breast cancer cells // Applied Nanoscience. 2018. Vol. 8. P. 447-453. https://doi.org/10.1007/s13204-018-0816-7

17. Campestrini L.H., Melo P.S., Peres L.E.P., Calhelha R.C., Ferreira I.C.F.R., Alencar S.M. A new variety of purple tomato as a rich source of bioactive carotenoids and its potential health benefits // Heliyon. 2019. Vol. 5. Issue 11. P. e02831. https://doi.org/10.1016/j.heliyon.2019.e02831

18. Oliveira-Alves Sh.C., Pereira R.S., Pereira A.B., Ferreira A., Mecha E., Bento da Silva A., et. al. Identification of functional compounds in baru (Dip-teryx alata Vog.) nuts: Nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect // Food Research International. 2020. Vol. 131. P 109026. https://doi.org/org/10.1016/j.foodres.2020.109026

19. Zhamanbayeva G.T., Aralbayeva A.N., Mur-zakhmetova M.K., Tuleukhanov S.T., Danilenko M. Cooperative antiproliferative and differentiationenhancing activity of medicinal plant extracts in acute myeloid leukemia cells // Biomedicine & Pharmacotherapy. 2016. Vol. 82. P 80-89. https://doi.org/10.1016/j.biopha.2016.04.062

20. Lage N.N., Layosa M.A.A., Arbizu S., Chew B.P., Pedrosa M.L., Mertens-Talcott S., et. al. Dark sweet cherry (Prunus avium) phenolics enriched in anthocyanins exhibit enhanced activity against the most aggressive breast cancer subtypes without toxicity to normal breast cells // Journal of Functional Foods. 2020. Vol. 64. P 103710. https://doi.org/10.1016/j.jff.2019.103710

21. Joanitti G.A., Azevedo R.B., Freitas S.M. Apoptosis and lysosome membrane permeabiliza-tion induction on breast cancer cells by an anticar-cinogenic Bowman-Birk protease inhibitor from Vigna unguiculata seeds // Cancer Letters. 2010. Vol. 293. Issue 1. P 73-81. https://doi.org/10.1016/j.canlet.2009.12.017

22. Jeong J.-H., Jung H., Lee S.-R., Lee H.-J., Hwang K.T., Kim T.-Y. Anti-oxidant, anti-proliferative and anti-inflammatory activities of the extracts from black raspberry fruits and wine // Food Chemistry. 2010. Vol. 123. Issue 2. P 338-344. https://doi.org/10.1016/j.foodchem.2010.04.040

23. Luo С., Zhang H. The role of proinflammato-ry pathways in the pathogenesis of colitis-associated colorectal cancer // Mediators of Inflammation. 2017. Vol. 2017. Article ID 5126048. https://doi.org/10.1155/2017/5126048

24. Agrawal U., Kumari N., Vasudeva P., Mohanty N.K., Saxena S. Overexpression of COX2 indicates poor survival in urothelial bladder cancer // Annals of Diagnostic Pathology. 2018. Vol 34. P. 50-55. https://doi.org/10.1016/j.anndiagpath.2018.01.008

25. Li W., Lin S., Li W., Wang W., Li X., Xu D. IL-8 interacts with metadherin promoting proliferation and migration in gastric cancer // Biochemical and Biophysical Research Communications. 2016. Vol. 478. Issue 3. P 1330-1337. https://doi.org/10.1016/j.bbrc.2016.08.123

26. Issy A.C., Nascimento G.C., Dias de Abreu G.H., Tristao F.S., Del-Bel E., Duarte T., et al. Differential behavioral and glial responses induced by dopaminergic mechanisms in the iNOS knockout mice // Behavioural Brain Research. 2018. Vol. 350. P 44-53. https://doi.org/10.1016/j.bbr.2018.05.002

27. Wu H.X., Cheng X., Jing X.-Q., Ji X.-P., Chen X.-Z., Zhang Y.-Q., et. al. LIFR promotes tumor angiogenesis by up-regulating IL-8 levels in colorectal cancer // Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2018. Vol. 1864. Issue 9. Part B. P 2769-2784. https://doi.org/10.1016/j.bbadis.2018.05.004

28. Chang C.-Y., Chen J.-Y., Chen S.-H., Cheng T.-J., Lin M.-T., Hu M.-L. Therapeutic treatment with ascorbate rescues mice from heat stroke-induced death by attenuating systemic inflammatory response and hypothalamic neuronal damage // Free Radical Biology and Medicine. 2016. Vol. 93. P 84-93. https://doi.org/10.1016/j.freeradbiomed.2015.12.017

29. Alfaro C., Sanmamed M.F., Rodnguez-Ruiz M.E., Teijeira A., Onate C., Gonzalez A., et al. Interleukin-8 in cancer pathogenesis, treatment and follow-up // Cancer Treatment Reviews. 2017. Vol. 60. P 24-31. https://doi.org/10.1016/j.ctrv.2017.08.004

30. Shahat A.A., Hidayathulla S., Khan A.A., Alanazi A.M., Meanazel O.A., Alqahtani A.S., et. al. Phytochemical profiling, antioxidant and anticancer activities of Gastrocotyle hispida growing in Saudi Arabia // Acta Tropica. 2019. Vol. 191. P 243-247. https://doi.org/10.1016/j.actatropica.2019.01.013

31. Omoni A.O., Aluko R.E. The anti-carcinogenic and anti-atherogenic effects of lycopene: a review // Trends in Food Science & Technology. 2005. Vol. 16. Issue 8. P 344-350. https://doi.org/10.1016/j.tifs.2005.02.002

32. Md Roduan M.R., Hamid R.A., Cheah YK., Mohtarrudin N. Cytotoxicity, antitumor-promoting an-dantioxidant activities of Annona muricata in vitro // Journal of Herbal Medicine. 2019. Vol. 15. P 100219. https://doi.org/10.1016/j.hermed.2018.04.004

33. Vannini F., Kashfi K., Nath N. The dual role of iNOS in cancer // Redox Biology. 2015. Vol. 6. P. 334343. https://doi.org/10.1016Zj.redox.2015.08.009

34. Schroy P.C., Brown-Shimer S., Kim K., Johnson K.A., Murnane M.J., Yang S., et al. Detection of p21ras mutations in colorectal adenomas and carcinomas by enzyme-linked immunosorbent assay // Cancer. 1995. Vol. 76. Issue 2. P 201-209. https://doi.org/10.1002/1097-0142(19950715)76:2<201::aid-cncr2820760207>3.0.co;2-t

35. Kubista M., Andrade J.M., Bengtsson M., Forootan A., Jona'k J., Lind K., et al. The real-time polymerase chain reaction // Molecular Aspects of Medicine. 2006. Vol. 27. P 95-125. https://doi.org/10.1016/j.mam.2005.12.007


Рецензия

Для цитирования:


Еремеева Н.Б., Макарова Н.В., Игнатова Д.Ф., Бахарев В.В. Исследование потенциальных антиканцерогенных и антиоксидантных эффектов экстрактов из растительного сырья. Известия вузов. Прикладная химия и биотехнология. 2020;10(4):613-626. https://doi.org/10.21285/2227-2925-2020-10-4-613-626

For citation:


Eremeeva N.B., Makarova N.V., Ignatova D.F., Bakharev V.V. Study of potential anti-carcinogenic and antioxidant effects of plant extracts. Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(4):613-626. (In Russ.) https://doi.org/10.21285/2227-2925-2020-10-4-613-626

Просмотров: 700


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)