Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Impact of blue light on the biological properties of aqueous extracts during the cultivation of the Inonotus rheades mycelium

https://doi.org/10.21285/2227-2925-2021-11-1-80-89

Abstract

The aim was to determine whether the antioxidant, cytotoxic and virucidal properties of aqueous extracts isolated from the Inonotus rheades basidiomycete depend on the illumination of the mycelium during cultivation. Effects of blue light illumination on the mycelium of I. rheades, which was cultivated on birch wood at 25±1 ºC in the dark and under a constant illumination of 12.8 W/m2 were studied. In the course of the work, two fractions of water-soluble polysaccharides were obtained: ВР-5 – isolated from the mycelium grown under blue light; BP-6 – isolated from mycelium grown in the dark. Two fractions of water-soluble pol- ysaccharides were obtained during the study: ВР-5 – water-soluble polysaccharides isolated from the mycelium grown under blue light; ВР-6 – water-soluble polysaccharides isolated from the mycelium grown in the dark. The extract from the mycelium grown under blue light showed a greater antioxidant activity than that from the mycelium grown in the dark. An analysis of the effect of the extracts under study on a test culture of tumour cells showed that the extracts cause the death of some amount of the cells on the 6th day of coincubation. The cytostatic effect of the extracts was also manifested following 6 days. In comparison with the control, the density of the culture at maximum concentrations decreased to 60% and 20% for BP-6 and BP- 5, respectively. The results of measuring the antiviral activity of the extracts showed that BP-5 and BP-6 completely destroy tick-borne encephalitis viruses. It was experimentally shown that, after normalisation of the pH values, both extracts contain components exhibiting a significant antiviral effect. The inhibition index for BP-5 and BP-6 comprised 3 and 2 lg PFU/ ml, respectively. This suggests that the concentration of virucidal components in the extract from mycelium grown under blue light is approximately 10 times higher than that in the extract from the mycelium grown in the dark. Thus, the extracts from the mycelium of I. rheades grown on birch discs contain substances exhibiting antioxidant, cytostatic and virucidal properties. The accumulation of these properties can be stimulated by blue light illumination.

About the Authors

G. B. Borovskii
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Russian Federation

Gennadii B. Borovskii, Dr. Sci. (Biology), Professor, Chief Researcher

132, Lermontov St., Irkutsk, 664033



T. G. Gornostai
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Russian Federation

Tatyana G. Gornostai, Cand. Sc. (Pharmacy), Researcher

132, Lermontov St., Irkutsk, 664033



M. S. Polyakova
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Russian Federation

Marina S. Polyakova, Leading Engineer

132, Lermontov St., Irkutsk, 664033



M. K. Borovskaja
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Russian Federation

Marina K. Borovskaja, Leading Engineer

132, Lermontov St., Irkutsk, 664033



M. A. Khasnatinov
Federal State Public Scientific Institution “Scientific Centre for Family Health and Human Reproduction Problems”
Russian Federation

Maxim A. Khasnatinov, Dr. Sci. (Biology), Leading Research

16, Timiryazeva St., Irkutsk, 664033



I. S. Solovarov
Federal State Public Scientific Institution “Scientific Centre for Family Health and Human Reproduction Problems”
Russian Federation

Innokentiy S. Solovarov, Junior Research

16, Timiryazeva St., Irkutsk, 664033



G. A. Danchinova
Federal State Public Scientific Institution “Scientific Centre for Family Health and Human Reproduction Problems”
Russian Federation

Galina A. Danchinova, Dr. Sci. (Biology), Head of the Lab. of Vector-borne Infections

16, Timiryazeva St., Irkutsk, 664033



References

1. Tisch D, Schmoll M. Light regulation of metabolic pathways in fungi. Applied Microbiology and Biotechnology. 2010;85:1259–1277. https://doi.org/10.1007/s00253-009-2320-1

2. Purschwitz J, Müller S, Kastner C, Fischer R. Seeing the rainbow: light sensing in fungi. Current Opinion in Microbiology. 2006;9(6):566–571. https://doi.org/10.1016/j.mib.2006.10.011

3. Herrera-Estrella A, Horwitz BA. Looking through the eyes of fungi: molecular genetics of photoreception. Molecular Microbiology. 2007;64(1):5– 15. https://doi.org/10.1111/j.1365-2958.2007.05632.x

4. Poyedinok NL, Yefremenkova OV, Mikhaylova OB, Negriyko AM. Biosynthetic activity of some higher medicinal mushrooms after exposure to light. Uspekhi meditsinskoi mikologii = Advances in Medical Mycology. 2007;9:176-178. (In Russian)

5. Manachere G. Research on the fruiting rhythm of a basidiomycete mushroom Coprinus congregatus Bull. Ex Fr. Journal of interdisciplinary cycle research. 1971;2(2):199–209.

6. Namba K., Inatomi S., Mori K., Shimosaka M., Okazaki M. Effects of LED lights on fruiting-body production in Hypsizigus marmoreus. Mushroom Science and Biotechnology. 2002;10:141–146. https://doi.org/10.24465/apmsb.10.3_141

7. Hu S-H, Wu C-Y, Chen Y-K, Wang J-C, Chang S-J. Effect of light and atmosphere on the cultivation of the golden oyster culinary-medicinal mushroom, Pleurotus citrinopileatus (higher Basidiomycetes). International Journal of Medicinal Mushrooms. 2013;15:101–111. https://doi.org/10.1615/IntJMedMushr.v15.i1.110

8. Nakano Y, Fujii H, Kojima M. Identification of blue-light photoresponse genes in Oyster Mushroom mycelia. Biochemistry & Molecular Biology Communications. 2010;74(10):2160–2165. https://doi.org/10.1271/bbb.100565

9. Hao J, Chen X, Lan J. Effect of light quality on growth and polysaccharides content of Ganoderma lucidum. China Journal of Chinese Materia Medica. 2010;35(17):2242–2245.

10. Mei X-L, Zhao Z, Chen X-D, Lan J. Light quality regulation of growth and endogenous IAA metabolism of Ganoderma lucidum mycelium. Chinese Journal of Natural Medicines. 2013;38(12):1887–1892. https://doi.org/10.4268/cjcmm20131209

11. Zhang LQ. Effect of UV on the growth of Inonotus obliquus and the content of polysaccharide. Renshen Yanjiu. 2008;9:16–19.

12. Poyedinok NL, Mykhailova OB, Shcherba VV, Buchalo AS, Negryko AM. Light regulation of growth and biosynthetic activity of Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae), in pure culture. International Journal of Medicinal Mushrooms. 2008;10(4):369–378. https://doi.org/10.1615/IntJMedMushr.v10.i4.100

13. Zheng W, Zhang M, Zhao Y, Miao K, Jiang H. NMR-based metabonomic analysis on effect of light on production of antioxidant phenolic compounds in submerged cultures of Inonotus obliquus. Bioresource Technology. 2009;100(19):4481–4487. https://doi.org/10.1016/j.biortech.2009.04.027

14. Gornostai TG, Poliakova MS, Borovskii GB, Olennikov DN. Lipids of Inonotus rheades (Hymenochaetaceae): Influence of substrate and light mode on fatty acid profile of mycelium. Khimija rastitel'nogo syr'ja = Chemistry of plant raw material. 2018;1:105–111. (In Russian) https://doi.org/10.14258/jcprm.2018012713

15. Gornostai TG, Borovskii GG, Kashchenko NI, Olennikov DN. Phenolic Compounds of Inonotus rheades (Agaricomycetes) Mycelium: RP-UPLCDAD-ESI/MS Profile and Effect of Light Wavelength on the Styrylpyrone Content. International Journal of Medicinal Mushrooms. 2018;20(7):637–645 https://doi.org/10.1615/IntJMedMushrooms.2018026595

16. Babitskaya VG, Shcherba VV, Puchkova TA, Smirnov DA, Bis'ko NA, Poyedinok NL. Effect of conditions of submerged culturing of a medicinal fungus Ganoderma lucidum (reishi) on polysaccharide production. Biotechnology in Russia. 2007;6:42–52.

17. Preito P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry. 1999;269(2):337–341. https://doi.org/10.1006/abio.1999.4019

18. Ding H-Y, Chou T-H, Liang C-H. Antioxidant and antimelanogenic properties of rosmarinic acid methyl ester from Origanum vulgare. Food Chemistry. 2010;123(2):254–262. https://doi.org/10.1016/j.foodchem.2010.04.025

19. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. Journal of the National Cancer Institute. 1973;51:1417–1423. https://doi.org/10.1093/jnci/51.5.1417

20. Khasnatinov MA, Danchinova GA, Zlobin VI, Lyapunov AV, Arbatskaya EV, Chaporgina EA, et al. Tick-borne encephalitis virus in Mongolia. Sibirskii meditsinskii zhurnal (Irkutsk) = Siberian Medical Journal (Irkutsk). 2012;111(4):9–12. (In Russian)

21. Gould EA, Clegg JCS. Growth, titration and purification of togaviruses. In: Mahy BWJ. (ed.), Virology: A Practical Approach. Oxford: IRL Press Ltd.; 1985. p. 43–78.

22. Kim G-Y, Lee J-Y, Lee J-O, Ryu C-H, Choi BT, Jeong Y-K, et al. Partial Characterization and Immunostimulatory Effect of a Novel Polysaccharide–Protein Complex Extracted from Phellinus linteus. Bioscience, Biotechnology, and Biochemistry. 2006; 70(5): 1218–1226. https://doi.org/10.1271/bbb.70.1218

23. Fan L, Ding S, Ai L, Deng K. Antitumor and immunomodulatory activity of water-soluble polysaccharide from Inonotus obliquus. Carbohydrate Polymers. 2012;90(2):870–874. https://doi.org/10.1016/j.carbpol.2012.06.013

24. Gornostay ТG, Khasnatinov МА, Solovarov IS, Danchinova GА, Borovskii GB. Antiviral properties of water extracts of mycelium Inonotus rheades, against the virus of tick-borne encephalitis virus in vitro. In: Bychkov IV, Kazakov АL (eds.). Aktualnye problemy nauki Pribaikalya. Issue 3. Irkutsk: Izdatel'stvo Irkutskogo gosudarstvennogo universiteta; 2020. p. 21–25. (In Russian)

25. Corrochano LM. Light in the Fungal World: From Photoreception to Gene Transcription and Beyond. Annual Review of Genetics. 2019;53:149–170. https://doi.org/10.1146/annurev-genet-120417-031415

26. Vance CP, Tregunna EB, Nambudiri AM, Towers GH. Styrylpyrone biosynthesis in Polyporus hispidus: I. Action spectrum and photoregulation of pigment and enzyme formation. Biochimica et Biophysica Acta. 1974;343(1):138–147. https://doi.org/10.1016/0304-4165(74)90245-1

27. Oh T-J, Hyun S-H, Lee S-G, Chun Y-J, Sung G-H, Choi H-K. NMR and GC-MS based metabolic profiling and free-radical scavenging activities of Cordyceps pruinosa mycelia cultivated under different media and light conditions. PLoS One. 2014;9(6):e90823. https://doi.org/10.1371/journal.pone.0090823

28. Buffoni Hall RS, Bornman JF, Bjоrn LO. UVinduced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. Mitis. Journal of Photochemistry and Photobiology B: Biology. 2002;66(1):13–20. https://doi.org/10.1016/s1011-1344(01)00270-6

29. Avalos J, Schrott EL. Photoinduction of carotenoid biosynthesis in Gibberella fujikuroi. FEMS Microbiology Letters. 1990;66(1-3):295–298. https://doi.org/10.1111/j.1574-6968.1990.tb04014.x

30. Kim H, Son H, Lee YW. Effects of light on secondary metabolism and fungal development of Fusarium graminearum. Journal of Applied Microbiology. 2013;116(2):380–389. https://doi.org/10.1111/jam.12381

31. Zalokar M. Biosynthesis of carotenoids in Neurospora аction spectrum of photoactivation. Archives of Biochemistry and Biophysics. 1955;56(2):318–25. https://doi.org/10.1016/0003-9861(55)90252-6

32. Poyedinok NL. Light regulation of growth and melanin formation in Inonotus obliquus (Pers.) Pilat. Biotechnologia Acta. 2013;6(2):115–20. https://doi.org/10.15407/biotech6.02.115

33. Kojima M, Kimura N, Miura R. Regulation of primary metabolic pathways in Oyster Mushroom mycelia induced by blue light stimulation: accumulation of shikimic acid. Scientific Reports. 2015;5:8630. https://doi.org/10.1038/srep08630

34. Linnakoski R, Reshamwala D, Veteli P, CortinaEscribano M, Vanhanen H, Marjomäki V. Antiviral agents from fungi: diversity, mechanisms and potential applications. Frontiers in Microbiology. 2018;9;2325. https://doi.org/10.3389/fmicb.2018.02325


Review

For citations:


Borovskii G.B., Gornostai T.G., Polyakova M.S., Borovskaja M.K., Khasnatinov M.A., Solovarov I.S., Danchinova G.A. Impact of blue light on the biological properties of aqueous extracts during the cultivation of the Inonotus rheades mycelium. Proceedings of Universities. Applied Chemistry and Biotechnology. 2021;11(1):80-89. (In Russ.) https://doi.org/10.21285/2227-2925-2021-11-1-80-89

Views: 535


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)