Study of metal-polymer copper nanocomposites using the method of UV spectroscopy
https://doi.org/10.21285/2227-2925-2021-11-1-165-170
Abstract
New polymer copper-containing nanocomposites based on poly-N-vinylimidazole were obtained. The formation of nanocomposites was carried out using the method of chemical reduction of copper ions from a solution of copper acetate with ascorbic acid in an aqueous medium in the presence of a polymer. Nanocomposites were prepared at the polymer:Cu (II) molar ratio of 10:1 and 5:1. The reduction reaction yielded powder nanocomposites of a red-brown colour and having a metallic shine. It was found that the content of copper in the obtained nanocomposites depends on the initial molar ratio of the stabilising poly-N-vinylimidazole and Cu (II), reaching 5.9% and 11.7%. The formation of nanosized copper particles was investigated and confirmed by UV spectroscopy. The optical spectra of aqueous solutions of the obtained copper-containing nanocomposites contained maxima at 537–541 and 646–651 nm, which confirmed the formation of ultradispersed copper in the nanosized state. The obtained copper-containing nanocomposites based on poly-N-vinylimidazole are promising materials for use in medicine and catalysis, as well as in optical, sensor and electronic devices.
About the Authors
A. A. IvanovaRussian Federation
Anastasia А. Ivanova, Junior Researcher
1, A.E. Favorsky St., Irkutsk, 664033
A. I. Emel’yanov
Russian Federation
Artem I. Emel’yanov, Cand. Sci. (Chemistry), Senior Researcher
1, A.E. Favorsky St., Irkutsk, 664033
S. A. Korzhova
Russian Federation
Svetlana A. Korzhova, Cand. Sci. (Chemistry), Researcher
1, A.E. Favorsky St., Irkutsk, 664033
A. S. Pozdnyakov
Russian Federation
Alexander S. Pozdnyakov, Cand. Sci. (Chemistry), Head of Laboratory of Functional Polymers
1, A.E. Favorsky St., Irkutsk, 664033
References
1. Ivanchev SS, Ozenn АN. Nanostructures in polymer systems. Polymer Science Series B. 2006;48(4): 213–225. https://doi.org/10.1134/S1560090406070153
2. Lee JH, Gulumian M, Faustman EM, Workman T, Jeon K, Yu IJ. Blood biochemical and hematological study after subacute intravenous injection of gold and silver nanoparticles and coadministered gold and silver nanoparticles of similar sizes. Biomed Research International. 2018;2018. 10 p. https://doi.org/10.1155/2018/8460910
3. Shurygina IA, Prozorova GF, Trukhan IS, Korzhova SA, Fadeeva TV, Pozdnyakov AS, et al. Nontoxic silver/poly-1-vinyl-1,2,4-triazole nanocomposite materials with antibacterial activity. Nanomaterials. 2020;10(8): 1477. https://doi.org/10.3390/nano10081477
4. Ahn Y, Jeong Y, Lee D, Lee Y. Copper nanowire − graphene core-shell nanostructure for highly stable transparent conducting electrodes. ACS Nano. 2015;9 (3):3125−3133. https://doi.org/10.1021/acsnano.5b00053
5. Malandrakis AA, Kavroulakis N, Chrysikopoulos CV. Synergy between Cu-NPs and fungicides against Botrytis cinerea. Science of the Total Environment. 2020;703:135557. https://doi.org/j.scitotenv.2019.135557
6. Pozdnyakov AS, Emel’yanov AI, Kuznetsova NP, Ermakova TG, Bolgova YI, Trofimova OM, et al. A Polymer Nanocomposite with CuNP Stabilized by 1Vinyl-1,2,4-triazole and Acrylonitrile Copolymer. Synlett. 2016;27(6):900–904. https://doi.org/10.1055/s-0035-1561292
7. Muhammad G, Hussain MA, Amin M, Hussain SZ, Hussain I, Abbas Bukhari SN, et al. Glucuronoxylanmediated silver nanoparticles: green synthesis, antimicrobial and wound healing applications. RSC Advances. 2017;7:42900–42908. https://doi.org/10.1039/C7RA07555C
8. Prokhorov E, España-Sánchez BL, Luna-Bárcenas G, Padilla-Vaca F, Cruz-Soto M-E, VázquezLepe MO, et al. Chitosan/copper nanocomposites: Correlation between electrical and antibacterial properties. Colloids and Surfaces B: Biointerfaces. 2019;180:186–192. https://doi.org/10.1016/j.colsurfb.2019.04.047
9. Panarin EF. Biologically active polymer nanosystems. Russian Chemical Bulletin. 2017;66(10):1812– 1820. https://doi.org/10.1007/s11172-017-1952-z
10. Zezina EA, Emel’yanov AI, Pozdnyakov AS, Myachina GF, Abramchuk SS, Feldman VI, et al. Radiation-induced synthesis of copper nanostructures in the films of interpolymer complexes. Radiation Physics and Chemistry. 2019;158:115–121. https://doi.org/10.1016/j.radphyschem.2019.01.019
11. Pozdnyakov AS, Ivanova AA, Emel’yanov AI, Bolgova YI, Trofimova OM, Myachina GF. Watersoluble stable polymer nanocomposites with AuNPs based on the functional poly(1-vinyl-1,2,4-triazole-co-Nvinylpyrrolidone)./ Journal Organometallic Chemistry. 2020;922;121352. https://doi.org/10.1016/j.jorganchem.2020.121352
12. Nakabayashi K, Mori H. Recent progress in controlled radical polymerization of N-vinyl monomers. European Polymer Journal. 2013;49(10):2808–2838. https://doi.org/10.1016/j.eurpolymj.2013.07.006
13. Lebedeva OV, Pozhidaev YN, Shaglaeva NS, Pozdnyakov AS, Bochkareva SS. Polyelectrolytes based on nitrogenous bases. Theoretical Foundations of Chemical Engineering. 2010;44(5):786–790. https://doi.org/10.1134/S0040579510050258
14. Selivanova AV, Tyurin VS, Beletskaya IP. Palladium nanoparticles supported on poly(N-vinyl-imidazole-coN-vinylcaprolactam) as an effective recyclable catalyst for the Suzuki reaction. ChemPlusChem. 2014;79(9):1278–1283. https://doi.org/10.1002/cplu.201402111
15. Zhou Y, Zhu M, Li S. Self-switchable catalysis by a nature-inspired polymer nanoreactor containing Pt nanoparticles. Journal of Materials Chemistry A. 2014;2 (19):6834–6839. https://doi.org/10.1039/C3TA15053D
16. Pekel NP, Güven О. Investigation of complex formation between poly(N-vinyl imidazole) and various metal ions using the molar ratio method. Colloid and Polymer Science. 1999;277(6):570–573. https://doi.org/10.1007/s003960050426
17. Fathima JB, Pugazhendhi A, Oves M, Venis R. Synthesis of eco-friendly copper nanoparticles for augmentation of catalytic degradation of organic dyes. Journal of Molecular Liquids. 2018;260;1–8. https://doi.org/10.1016/j.molliq.2018.03.033
18. Cheng X, Zhang X, Yin H, Wang A, Xu Y. Modifier effects on chemical reduction synthesis of nanostructured copper. Applied Surface Science. 2006; 253(5):2727–2732. https://doi.org/10.1016/j.apsusc.2006.05.125
19. Xiong J, Wang Y, Xue Q, Wu X. Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chemistry. 2011;13(4): 900–904. https://doi.org/10.1039/c0gc00772b
20. Soldatenko E.M., Doronin S.Yu., Chernova R.K. Chemical methods for producing copper nanoparticles. Butlerovskie Soobshcheniya = Butlerov Communication. 2014;37(2):103–113. (In Russian)
21. Dhas NA, Raj CP, Gedanken A. Synthesis, characterization, and properties of metallic copper nanoparticles. Chemistry of Materials. 1998;10(5):1446– 1452. http://dx.doi.org/10.1021/cm9708269
22. Rajesh KM, Ajitha B, Reddy YAK, Suneetha Y, Reddy PS. Synthesis of copper nanoparticles and role of pH on particle size control. Materials Today: Proceedings. 2016;3(6):1985–1991. https://doi.org/10.1016/j.matpr.2016.04.100
23. Mott D, Galkowski J, Wang L, Luo J, Zhong C-J. Synthesis of size-controlled and shaped copper nanoparticles. Langmuir. 2007;23(10):5740–5745. https://doi.org/10.1021/la0635092
Review
For citations:
Ivanova A.A., Emel’yanov A.I., Korzhova S.A., Pozdnyakov A.S. Study of metal-polymer copper nanocomposites using the method of UV spectroscopy. Proceedings of Universities. Applied Chemistry and Biotechnology. 2021;11(1):165-170. (In Russ.) https://doi.org/10.21285/2227-2925-2021-11-1-165-170