Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Phototrophs in alternative energy

https://doi.org/10.21285/2227-2925-2021-11-3-358-371

Abstract

Abstract: The role of phototrophs is examined in alternative energy, with the main emphasis on unicellular algae. Particular attention is paid to the use of phototrophs for generating electricity using biofuel cells (plant and enzymatic biofuel cells are discussed). This study focuses on microbial fuel cells (MFC), which, along with electric power, allow obtaining biofuels and biohydrogen. This article explains the factors limiting the MFC power, and ways of overcoming them. For example, it seems promising to develop various photobioreactors in order to reduce the loss of MFC power due to overvoltage. The use of microphototrophs in MFC has led to the development of photosynthetic MFC (or PhotoMFC) through the design of autotrophic photobioreactors with forced illumination. They allow generating oxygen through photosynthesis, both in situ and ex situ, by recirculating oxygen from the photobioreactor to the cathode chamber. Artificial redox mediators can be used here, transferring electrons directly from the non-catalytic cathode to O2, formed as a result of the photosynthetic activity of algae. Biologically catalyzed cathodes have been proven to generate less power than chemical catalysts. It is noted, that the MFC installations with the micro-algae allow utilizing a wider circle of different connections – the components of effluents and withdrawals: organic acids, sugar, alcohols, fats and other substrata. The use of phototrophs for the production of biofuels is of special interest. Several different types of renewable biofuels can be produced from microalgae, the production of which can be combined with wastewater treatment, CO2 capture and production of various compounds.

About the Authors

M. S. Konovalo
Irkutsk State University,
Russian Federation

Mikhail S. Konovalov, Researcher

1, Karl Marx St., Irkutsk, 664003



E. Yu. Konovalova
Irkutsk State University
Russian Federation

Elena Yu. Konovalova, Researcher

1, Karl Marx St., Irkutsk, 664003



I. N. Egorova
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Russian Federation

Irina N. Egorova, Cand. Sci. (Biology), Senior Researcher

132, Lermontov St., Irkutsk, 664033



G. O. Zhdanova
Irkutsk State University
Russian Federation

Galina O. Zhdanova, Researcher

1, Karl Marx St., Irkutsk, 664003



D. I. Stom
Irkutsk State University;
Russian Federation

Devard I. Stom, Dr. Sci. (Biology), Professor, Head of the laboratory of Aquatic Toxicology; Chief Researcher, Baikal Museum ISC

1, Karl Marx St., Irkutsk, 664003

1, Academicheskaya St., Listvyanka, 664520

1, Academicheskaya St., Listvyanka, 664520



References

1. Skjånes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology. 2013;33(2): 172–215. https://doi.org/10.3109/07388551.2012.681625

2. Vershinin A. Biological functions of carotenoidsdiversity and evolution. Biofactors. 1999;10(2-3):99–104. https://doi.org/10.1002/biof.5520100203

3. Chisti Y. Biodiesel from microalgae. Biotechnology Advances. 2007;25(3):294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

4. Ullah K, Ahmad M, Sharma VK, Lu P, Harvey A, Zafar M, et al. Algal biomass as a global source of transport fuels: Overview and development perspectives. Progress in Natural Science: Materials International. 2014;24(4):329–339. https://doi.org/10.1016/j.pnsc.2014.06.008

5. Olivieri G, Salatino P, Marzocchella A. Advances in photobioreactors for intensive microalgal production: Configurations, operating strategies and applications. Journal of Chemical Technology and Biotechnology. 2013;89(2):178–195. https://doi.org/10.1002/jctb.4218

6. Liu H, Cheng S, Logan BE. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology. 2005;39(14):5488–5493. https://doi.org/10.1021/es050316c

7. Oh SE, Min B, Logan BE. Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science & Technology. 2004;38 (18):4900–4904. https://doi.org/10.1021/es049422p

8. Pham TH, Jang JK, Chang IS, Kim BH. Improvement of cathode reaction of a mediator–less microbial fuel cell. Journal of Microbial Biotechnology.2004;14(2):324–329.

9. Yagishita T, Sawayama S, Tsukahara K-I, Ogi T. Effects of intensity of incident light and concentrations of Synechococcus sp. and 2-hydroxy-1,4-naphthoquinone on the current output of photosynthetic electrochemical cell. Solar Energy. 1997;61(5):347–353. https://doi.org/10.1016/S0038-092X(97)00069-8

10. Juang DF, Lee CH, Hsueh SC. Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode. Bioresource Technology. 2012;123:23–29. https://doi.org/10.1016/j.biortech.2012.07.041

11. Del Campo AG, Cañizares P, Rodrigo MA, Fernández FJ, Lobato J. Microbial fuel cell with an algae-assisted cathode: A preliminary assessment. Journal of Power Sources. 2013;242:638–645. https://doi.org/10.1016/j.jpowsour.2013.05.110

12. Singh SP, Singh P. Effect of CO2 concentration on algal growth: A review. Renewable and Sustainable Energy Reviews. 2014;38:172–179. https://doi.org/10.1016/j.rser.2014.05.043

13. Fu C-C, Hung T-C, Wu W-T, Wen T-C, Su CH. Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis. Biochemical Engineering Journal. 2010;52(2-3):175–180. https://doi.org/10.1016/j.bej.2010.08.004

14. Meirong M, Xiaoju Sh, Limin C, Zongwu D. The operation of photosynthetic microbial fuel cells powered by Anabaena variabilis. In: Proceedings of 2013 International Conference on Materials for Renewable Energy and Environment. 2013, p. 968–972. https://doi.org/10.1109/ICMREE.2013.6893833

15. Cao Y, Mu H, Liu W, Zhang R, Guo J, Xian M, Liu H. Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microbial Cell Factories. 2019;18(1). Article number 39. https://doi.org/10.1186/s12934-019-1087-z

16. Aiyer KS. Synergistic effects in a microbial fuel cell between co-cultures and a photosynthetic alga Chlorella vulgaris improve performance. Heliyon. 2021;7(1):e05935. https://doi.org/10.1016/j.heliyon.2021.e05935

17. Mao L, Verwoerd WS. Genome-scale stoichiometry analysis to elucidate the innate capability of the cyanobacterium Synechocystis for electricity generation. Journal of Industrial Microbiology and Biotechnology. 2013;40(10):1161–1180. https://doi.org/10.1007/s10295-013-1308-0

18. Hadiyanto H, Christwardana M, Minasheila T, Wijaya YH. Effects of Yeast Concentration and Microalgal Species on Improving the Performance of Microalgal- Microbial Fuel Cells (MMFCs). International Energy Journal. 2020;20(3):337–344. http://www.rericjournal.ait.ac.th/index.php/reric/article/view/2337

19. Strik DPBTB, Hamelers HVM, Buisman CJN. Solar energy powered microbial fuel cell with a reversible bioelectrode. Environmental Science & Technology. 2010;44(1):532–537. https://doi.org/10.1021/es902435v

20. Otadi M, Poormohamadian S, Zabihi F, Goharrokhi M. Microbial fuel cell production with alga. World Applied Sciences Journal. 2011;14:91–95.

21. Velasquez-Orta SB, Curtis TP, Logan BE. Energy from algae using microbial fuel cells. Biotechnology and Bioengineering. 2009;103(6):1068–1076. https://doi.org/10.1002/bit.22346

22. Mahesh S, Tadesse D, Melkamu A. Evaluation of photosynthetic microbial fuel cell for bioelectricity production. Indian Journal of Energy. 2013;2(4):116–120.

23. Yadav AK, Panda P, Rout P, Behara S, Patra AK, Nayak SK, et al. Entrapment of algae for waste water treatment and bioelectricity generation in microbial fuel cell. In: Proceedings of XVIIth International Conference on Bioencapsulation. 2009, p. 24–26.

24. Logan BE. Microbial Fuel Cells. John Wiley & Sons; 2008. 216 p. https://doi.org/10.1002/9780470258590

25. Powell EE, Mapiour ML, Evitts RW, Hill GA. Growth kinetics of Chlorella vulgaris and its use as a cathodic half-cell. Bioresource Technology. 2009;100 (1):269–274. https://doi.org/10.1016/j.biortech.2008.05.032

26. Jiang H-M, Luo S-Ju, Shi X-S, Dai M, Guo RB. A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation. Journal of Central South University. 2013;20(2):488–494. https://doi.org/10.1007/s11771-013-1510-2

27. Pandit S, Ghosh S, Ghangrekar M, Das D. Performance of an anion exchange membrane in association with cathodic parameters in a dual chamber microbial fuel cell. International Journal of Hydrogen Energy. 2012;37(11):9383–9392. https://doi.org/10.1016/j.ijhydene.2012.03.011

28. Lan JC-W, Raman K, Huang Ch-M, Chang Ch-M. The impact of monochromatic blue and red LED light upon performance of photo microbial fuel cells (PMFCs) using Chlamydomonas reinhardtii transformation F5 as biocatalyst. Biochemical Engineering Journal. 2013;78:39–43. https://doi.org/10.1016/j.bej.2013.02.007

29. Strik DPBTB, Hamelers (Bert) HVM, Snel JFH, Buisman CJN. Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research. 2008;32(9):870–876. https://doi.org/10.1002/er.1397

30. Greenman J, Gajda I, Ieropoulos I. Microbial Fuel Cells (MFC) and microalgae; Photo Microbial Fuel Cell (PMFC) as complete recycling machines. Sustainable Energy & Fuels. 2019;3(10):2546–2560. https://doi.org/10.1039/C9SE00354A

31. Lu A, Li Y, Jin S, Ding H, Zeng C, Wang X, et al. Microbial fuel cell equipped with a photocatalytic rutilecoated cathode. Energy & Fuels. 2010;24(2):1184-1190. https://doi.org/10.1021/ef901053j

32. Wang S, Yang X, Zhu Yi, Sua Yu, Li C. Solarassisted dual chamber microbial fuel cell with a CuInS2 photocathode. RSC Advances. 2014;4(45):23790–23796. https://doi.org/10.1039/C4RA02488e

33. Kim H-W, Lee K-S, Razzaq A, Lee SH, Grimes CA, In S-I. Photocoupled bioanode: A new approach for improved microbial fuel cell performance. Energy Technology. 2017;6(2):57–262. https://doi.org/10.1002/ente.201700465

34. Kaku N, Yonezawa N, Kodama Yu, Watanabe K. Plant/microbe cooperation for electricity generation in a rice paddy field. Applied Microbiology and Biotechnology. 2008;79(1):43–49. https://doi.org/10.1007/s00253-008-1410-9

35. Lee D-J, Chang J-S, Lai J-Y. Microalgaemicrobial fuel cell: A mini review. Bioresource Technology. 2015;198:891–895. https://doi.org/10.1016/j.biortech.2015.09.061

36. Lobato J, del Campo AG, Fernández FJ, Cañizares P, Rodrigo MA. Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae. Applied Energy. 2013;110:220–226. https://doi.org/10.1016/j.apenergy.2013.04.010

37. Rodrigo MA, Cañizares P, García H, Linares JJ, Lobato J. Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell. Bioresource Technology. 2009;100(20):4704–4710. https://doi.org/10.1016/j.biortech.2009.04.073

38. Wang X, Feng Yu, Liu J, Lee H, Li C, Li N, et al. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosensors and Bioelectronics. 2010;25(12):2639–2643. https:// doi.org/10.1016/j.bios.2010.04.036

39. Nishio K, Hashimoto K, Watanabe K. Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor. Applied Microbiology and Biotechnology. 2010;86(3):957–964. https://doi.org/10.1007/s00253-009-2400-2

40. Zou Y, Pisciotta J, Billmyre RB, Baskakov IV. Photosynthetic microbial fuel cells with positive light response. Biotechnology and Bioengineering. 2009; 104(5):939–946. https://doi.org/10.1002/bit.22466

41. Gajda I, Greenman J, Melhuish C, Ieropoulos I. Photosynthetic cathodes for Microbial Fuel Cells. International Journal of Hydrogen Energy. 2013;38(26):11559– 11564. https://doi.org/10.1016/j.ijhydene.2013.02.111

42. Thorne R, Hu H, Schneider K, Bombelli P, Fisher A, Peter LM, et al. Porous ceramic anode materials for photo-microbial fuel cells. Journal of Materials Chemistry. 2011;21(44):18055–18060. https://doi.org/10.1039/C1JM13058G

43. Lakshmidevi R, Gandhi NN, Muthukumar K. Bioelectricity and bioactive compound production in an algal-assisted microbial fuel cell with immobilized bioanode. Biomass Conversion and Biorefinery. 2020. https://doi.org/10.1007/s13399-020-00916-6

44. Kondaveeti S, Mohanakrishna G, Lee J-K, Kalia VC. Methane as a substrate for energy generation using microbial fuel cells. Indian Journal of Microbiology. 2019;59(1):121–124. https://doi.org/10.1007/s12088-018-0765-6

45. He Z, Kan J, Mansfeld F, Angenent LT, Nealson KH. Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environmental Science & Technology. 2009;43(5):1648–1654. https://doi.org/10.1021/es803084a

46. Xu C, Poon K, Choi MMF, Wang R. Using live algae at the anode of a microbial fuel cell to generate electricity. Environmental Science and Pollution Research. 2015;22(20):15621–15635. https://doi.org/10.1007/s11356-015-4744-8

47. Bolognesi S, Cecconet D, Callegari A, Capodaglio AG. Combined microalgal photobioreactor/ microbial fuel cell system: Performance analysis under different process conditions. Environmental Research. 2021;12(7). 110263. https://doi.org/10.1016/j.envres.2020.110263

48. Dasgupta CN, Gilbert JJ, Lindblad P, Heidorn T, Borgvang SA, Skjånes K, et al. Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. International Journal of Hydrogen Energy. 2010;35(19):10218–10238. https://doi.org/10.1016/j.ijhydene.2010.06.029

49. Dubini A, Ghirardi ML. Engineering photosynthetic organisms for the production of biohydrogen. Photosynthesis Research. 2015;123(3):241–253. https://doi.org/10.1007/s11120-014-9991-x

50. Limongi AR, Viviano E, de Luca M, Radice RP, Bianco G, Martelli G. Biohydrogen from microalgae: production and applications. Applied Sciences. 2021;11(4). 1616. https://doi.org/10.3390/app11041616

51. Philipps G, Happe T, Hemschemeier A. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta. 2012;235(4):729–745. https://doi.org/10.1007/s00425-011-1537-2

52. Batyrova K, Gavrisheva A, Ivanova E, Liu J, Tsygankov A. Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp. International Journal of Molecular Sciences. 2015;16 (2):2705–2716. https://doi.org/10.3390/ijms16022705

53. Volgusheva AA, Jokel M, Allahverdiyeva Y, Kukarskikh GP, Lukashev EP, Lambreva MD, et al. Comparative analyses of H2 photoproduction in magnesium-and sulfur-starved Chlamydomonas reinhardtii cultures. Physiologia Plantarum. 2017:161(1):124– 137. https://doi.org/10.1111/ppl.12576

54. Fakhimi N, Dubini A, Tavakoli O, González-Ballester D. Acetic acid is key for synergetic hydrogen production in Chlamydomonas-bacteria co-cultures. Bioresource Technology. 2019;289. 121648. https://doi.org/10.1016/j.biortech.2019.121648

55. Fakhimi N, Gonzalez-Ballester D, Fernández E, Galván A, Dubini A. Algae-Bacteria Consortia as a Strategy to Enhance H2 Production. Cells. 2020;9(6). 1353. https://doi.org/10.3390/cells9061353

56. Markov SA, Protasov ES, Bybin VA, Eivazova ER, Stom DI. Using immobilized cyanobacteria and culture medium contaminated with ammonium for H2 production in a hollow-fiber photobioreactor. International Journal of Hydrogen Energy. 2015;40(14):4752–4757. https://doi.org/10.1016/j.ijhydene.2015.02.053

57. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews. 2010;14 (1):217–232. https://doi.org/10.1016/j.rser.2009.07.020

58. Avagyan AB, Singh B. Biodiesel from Algae. In: Biodiesel: Feedstocks, Technologies, Economics and Barriers. Springer; 2019, p.77–112.

59. Farooq A, Khan AU, Yasar A. Transesterification of oil extracted from different species of algae for biodiesel production. African Journal of Environmental Science and Technology. 2013;7(6):358–364. https://doi.org/10.5897/AJEST12.167

60. Mohammadi M, Azizollahi-Aliabadi M. Biodiesel production from microalgae. Journal of Biology and Today's World. 2013;2(2):38–42. https://doi.org/10.15412/J.JBTW.01020204

61. Blinová L, Bartošová A, Gerulová K. Cultivation of microalgae (Chlorella vulgaris) for biodiesel production. Research Papers Faculty of Materials Science and Technology Slovak University of Technology. 2015;23(36):87–95. https://doi.org/10.1515/rput-2015-0010

62. Samira C, Hacene H, Agathos SN. Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara. International Journal of Hydrogen Energy. 2009;34(11):4941-4946. https://doi.org/10.1016/j.ijhydene.2008.10.058

63. Tsygankov AA, Hall DO, Liu J, Rao KK. An au tomated helical photo bioreactor incorporating cyanobacteria for continuous hydrogen production. In: Zaborsky OR (ed.) Biohydrogen. London: Plenum Press; 1998, p. 431–440. https://doi.org/10.1007/978-0-585-35132-2_52

64. Barros AI, Gonçalves AL, Simões M, Pires JCM. Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews. 2015;41:1489–1500. https://doi.org/10.1016/j.rser.2014.09.037

65. Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews. 2012;16(4):2070–2093. https://doi.org/10.1016/j.rser.2012.01.003


Review

For citations:


Konovalo M.S., Konovalova E.Yu., Egorova I.N., Zhdanova G.O., Stom D.I. Phototrophs in alternative energy. Proceedings of Universities. Applied Chemistry and Biotechnology. 2021;11(3):358-371. (In Russ.) https://doi.org/10.21285/2227-2925-2021-11-3-358-371

Views: 501


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)