Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Interactions in ternary bismuth-containing molybdate systems M2MoO4-Bi2(MoO4)3-Zr(MoO4)2 in the subsolidus region

https://doi.org/10.21285/2227-2925-2021-11-4-508-516

Abstract

A fundamental problem in materials science consists in establishing a relationship between the chemical composition, structure, and properties of materials. This issue can be solved through the study of multicomponent systems and the directed synthesis of promising compounds. Of practical interest here are active dielectrics that are based on complex oxide compounds, specifically molybdates. Among complex molybdates and tungstates, ternary caged molybdates of the following structural types are of greatest importance: nasicon, perovskite, langbeinite, etc. Due to their widely varying elemental and quantitative compositions, such molybdates are convenient models for structural and chemical design, as well as the establishment of “composition–structure– properties” genetic relationships. Bismuth-containing complex molybdate systems exhibit the formation of phases having ferro-piezoelectric, ionic, and other properties. In this work, the Rb2MoO4–Bi2(MoO4)3–Zr(MoO4)2 ter nary salt system was studied for the first time using the method of intersecting sections in the subsolidus region (450–650 ℃). To this end, quasibinary sections were identified; triangulation was performed. Ternary molybdates Rb5BiZr(MoO4)6 and Rb2BiZr2(MoO4)6,5 were formed in the system using a ceramic technology. These compounds are isostructural to the previously obtained REE molybdates (M5LnZr(MoO4)6) but contain trivalent bismuth instead of rare earth elements. The structure of Rb5BiZr(MoO4)6 was adjusted via the Rietveld refinement technique using the TOPAS 4.2 software package. The ternary molybdate crystallizes in a trigonal system, with the following unit cell parameters of the R`3c space group: a = 10.7756(2) and c = 39.0464(7) Å. According to the studies of thermal properties exhibited by M5BiZr(MoO4)6, these ternary molybdates undergo the first-order phase transition in the temperature range of 450–600 ºC. The IR and Raman spectra of M5BiZr(MoO4)6 reveal the crystallization of ternary molybdates in the R`3c space group. The conducted comparative characterization of M2MoO4–Bi2(MoO4)3–Zr(MoO4)2 phase diagrams suggests that the phase equilibria of these systems depend on the nature of molybdates of monovalent elements.

About the Authors

J. G. Bazarova
Baikal Institute of Nature Management SB RAS
Russian Federation

Jibzema G. Bazarova, Dr. Sci. (Chemistry), Professor, Chief Researcher

6, Sakhyanova St., Ulan-Ude, 670047



A. V. Logvinova
Baikal Institute of Nature Management SB RAS; Buryat State University named after D. Banzarov
Russian Federation

Alexandra V. Logvinova, Engineer, Baikal Institute of Nature Management SB RAS, 6, Sakhyanova St., Ulan-Ude, 670047; Laboratory Assistant, Banzarov Buryat State University, 24a, Smolin St., Ulan-Ude, 670000



B. G. Bazarov
Baikal Institute of Nature Management SB RAS; Buryat State University named after D. Banzarov
Russian Federation

Bair G. Bazarov, Dr. Sci. (Physics and Mathematics), Associate Professor, Leading Researcher, Baikal Institute of Nature Management SB RAS, 6, Sakhyanova St., Ulan-Ude, 670047; Associate Professor, Banzarov Buryat State University, 24a, Smolin St., Ulan-Ude, 670000



References

1. Isupov V. A. Binary molybdates and tungstates of mono and trivalent elements as possible ferroelastics and ferroelectrics. Ferroelectrics. 2005; 320(1):63–90. https://doi.org/10.1080/00150190500259699.

2. Isupov V. A. Ferroelectric and ferroelastic phase transitions in molybdates and tungstates of monovalent and bivalent elements. Ferroelectrics. 2005;322(1):83–114. https://doi.org/10.1080/00150190500315574.

3. Tsyrenova G. D., Pavlova E. T., Solodovnikov S. F., Popova N. N., Kardash T. Yu., Stefanovich S. Yu., et al. New ferroelastic K2Sr(MoO4)2: synthesis, phase transitions, crystal and domain structures, ionic conductivity. Journal of Solid State Chemistry. 2016;237:64−71. https://doi.org/10.1016/j.jssc.2016.01.011.

4. Savina A. A., Solodovnikov S. F., Basovich O. M., Solodovnikova Z. A., Belov D. A., Pokholok K. V., et al. New double molybdate Na9Fe(MoO4)6: synthesis, structure, properties. Journal of Solid State Chemistry. 2013;205:149–153. https://doi.org/10.1016/j.jssc.2013.07.007.

5. Savina A. A., Morozov V. A., Buzlukov A. L., Arapova I. Yu., Stefanovich S. Yu., Baklanova Ya. V., et al. New solid electrolyte Na9Al(MoO4)6: structure and Na+ ion conductivity. Chemistry of Materials. 2017;29(20):8901–8913. https://doi.org/10.1021/acs.chemmater.7b03989.

6. Solodovnikov S. F., Solodovnikova Z. A., Zolotova E. S., Yudin V. N., Gulyaeva O. A., Tushinova Y. L., et al. Nonstoichiometry in the systems Na2MoO4 –MMoO4 (M = Co, Cd), crystal structures of Na3.36Co1.32(MoO4)3, Na3.13Mn1.43(MoO4)3 and Na3.72Cd1.14(MoO4)3, crystal chemistry, compositions and ionic conductivity of alluaudite-type double molybdates and tungstates. Journal of Solid State Chemistry. 2017;253:121–128. https://doi.org/10.1016/j.jssc.2017.05.031.

7. Medvedeva N. I., Buzlukov A. L., Skachkov A. V., Savina A. A., Morozov V. A., Baklanova Ya. V., et al. Mechanism of sodium-ion diffusion in alluauditetype Na5Sc(MoO4)4 from NMR experiment and ab initio calculations. Journal of Physical Chemistry C. 2019;123(8):4729–4738. https://doi.org/10.1021/acs.jpcc.8b11654.

8. Fan W., He Y., Long L., Gao Y., Liu F., Liu J. Multiplexed excitations KGd1−x Eux (MoO4)2 re d-emitting phosphors with highly Eu3+ doping for white LED application. Journal of Materials Science: Materials in Electronics. 2021;32(5):6239–6248. https://doi.org/10.1007/s10854-021-05339-1.

9. Wang Y., Song M., Xiao L., Li Q. Upconversion luminescence of Eu3+ and Sm3+ single-doped NaYF4 and NaY(MoO4)2. Journal of Luminescence. 2021;238:118203. https://doi.org/10.1016/j.jlumin.2021.118203.

10. Morozov V. A., Lazoryak B. I., Shmurak S. Z., Kiselev A. P., Lebedev O. I., Gauquelin N., et al. Influence of the structure on the properties of Nax Euy (MoO4)z red phosphors. Chemistry of Materials. 2014;26(10):3238−3248. https://doi.org/10.1021/cm500966g.

11. Guo С., Gao F., Xu Y., Liang L., Shi F. G., Yan B. Efficient red phosphors Na5Ln(MoO4)4: Eu3+ (Ln = La, Gd and Y) for white LEDs. Journal of Physics D: Applied Physics. 2009;42(9):095407. https://doi.org/10.1088/0022-3727/42/9/095407.

12. Zhao C., Yin X., Huang F., Hang Y. Synthesis and photoluminescence properties of the high-brightness Eu3+-doped M2Gd4(MoO4)7 (M = Li, Na) red phosphors. Journal of Solid State Chemistry. 2011;184(12):3190–3194. https://doi.org/10.1016/j.jssc.2011.09.025.

13. Pandey I. R., Karki S., Daniel D. J., Kim H. J., Kim Y. D., Lee M. H., et al. Crystal growth, optical, luminescence and scintillation characterization of Li2Zn2(MoO4)3 crystal. Journal of Alloys and Compounds. 2021;860:158510. https://doi.org/10.1016/j.jallcom.2020.158510.

14. Voron’ko Yu. K., Zharikov E. V., Lis D. A., Popov A. V., Smirnov V. A., Subbotin K. A., et al. Growth and spectroscopic studies of NaLa(MoO4)2 :Tm3+ crystals: a new promising laser material. Optics and Spectroscopy. 2008;105(4):538–546. https://doi.org/10.1134/S0030400X08100081.

15. Gao S., Zhu Z., Wang Y., You Z., Li J., Wang H., et al. Growth and spectroscopic investigations of a new laser crystal Yb3+-doped Na2Gd4(MoO4)7. Optical Materials. 2013;36(2):505–508. https://doi.org/10.1016/j.optmat.2013.10.018.

16. Bazarova J. G., Logvinova A. V., Bazarov B. G. Phase relations in the Rb2MoO4–R2(MoO4)3–ZR(MoO4)2 (R = Al, Fe, Cr, Y) systems. Inorganic Materials. 2020;56(12):1278–1283. https://doi.org/10.1134/S0020168520120043.

17. Klevtsova R. F., Zolotova E. S., Glinskaya L. A., Klevtsov P. V. Synthesis of zirconium and hafnium double molybdates with cesium and the crystal structure of Cs8Zr(MoO4)6. Kristallografiya = Crystallography. 1988;25(5):972–978. (In Russian).

18. Zolotova E. S., Podberezenskaya E. V., Klevtsov P. V. Double cobalt molybdates with zirconium and hafnium CsM(IV)(MoO4)3. Izvestiya Sibirskogo Otdeleniya AN SSSR = Proceedings of the USSR Academy of Science, Siberian Branch. 1976;7:93–95. (In Russian).

19. Lazoryak B. I., Efremov V. A. On the structure of palmyerite-like K5Nd (MoO4)4, K5Bi(MoO4)4, Rb5Gd(MoO4)4. Kristallografiya =Crystallography. 1986;31(2):237–243. (In Russian).

20. Rybakova T. P., Trunov V. K. On double molybdates Rb5R(MoO4)4. Journal of Inorganic Chemistry. 1971;16(1):277–281. (In Russian).

21. Gongorova L. I., Bazarov B. G., Chimitova O. D., Anshits A. G., Vereschagina T. A., Klevtsova R. F., et al. Crystal structure of a new ternary molybdate Rb5CeZr(MoO4)6. Journal of Structural Chemistry. 2012;53(2):329–333, https://doi.org/10.1134/S0022476612020175.

22. Bazarov B. G., Klevtsova R. F., Bazarova Ts. T., Glinskaya L. A., Fedorov K. N., Bazarova J. G. Synthesis and crystal structure of triple molybdate K5InHf(MoO4)6. Zhurnal neorganicheskoi khimii = Journal of Inorganic Chemistry. 2005;50(8):1240– 1243. (In Russian).

23. Bazarova J. G., Tushinova Yu. L., Logvinova A. V., Bazarov B. G., Dorzhieva S. G., Bazarova Ts. T. Synthesis, structure and properties of triple molybdates of the K5RZr(MoO4)6 composition in K2MoO4 – R2(MoO4)3 – Zr(MoO4)2 systems (R = trivalent elements). Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(2):202–211. (In Russian). https://doi.org/10.21285/2227-2925-2019-9-2-202-211.

24. Petrov K. I., Poloznikova M. E., Sharipov H. T., Fomichev V. V. Vibrational spectra of molybdates and tungstates. Tashkent: Fan; 1990.136 p. (In Russian).


Review

For citations:


Bazarova J.G., Logvinova A.V., Bazarov B.G. Interactions in ternary bismuth-containing molybdate systems M2MoO4-Bi2(MoO4)3-Zr(MoO4)2 in the subsolidus region. Proceedings of Universities. Applied Chemistry and Biotechnology. 2021;11(4):508-516. (In Russ.) https://doi.org/10.21285/2227-2925-2021-11-4-508-516

Views: 401


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)