Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Effect of antioxidants and growth regulators on shoot organogenesis in the apical meristem culture of Fragaria × ananassa (Duchesne ex Weston) Duchesne ex Rozier

https://doi.org/10.21285/2227-2925-2021-11-4-549-560

Abstract

The initiation of strawberries into in vitro culture is known to be complicated by the inhibition of organogenesis by phenolic oxidation products. An important role in this process is given to the selection of growth regulators that increase meristematic cell activity and shoot proliferation at the stage of organogenesis induction. The present study aims to obtain a viable apical meristem culture of garden strawberry and to study the effect of different antioxidants (reduced glutathione (RG); a new preparation, i.e., a mechanical composite (MC) on the basis of biogenic silicon and green tea catechins and plant growth regulators (6-benzylaminopurine; thidiazuron) on the initiation of axillary shoot formation in strawberry meristem culture. Terminal buds containing an apical meristem and two leaf primordia isolated from the stolons of two garden strawberry cultivars (Sunny Meadow and Festival Chamomile) were used as primary explants for the initiation of strawberries into in vitro culture. It was found for the first time that the MC exhibits higher antioxidant activity as compared to reduced glutathione, reduces darkening of initial explants, as well as enhancing regeneration up to 13.0% at p ≤ 0.05. Furthermore, the best effect on the formation of microshoots per explant is observed toward the end of material introduction into in vitro culture when combining the MC with growth regulators in the culture medium. Here, the effect of strawberry cultivar on explant regeneration and the number of microshoots per explant are insignificant. It is concluded that the procedure for using the MC as an effective antioxidant during material initiation into the culture can be applied to the large-scale in vitro propagation of garden strawberries. Moreover, the technology for obtaining the MC from plant waste is environmentally friendly, which is a significant advantage for its use in in vitro technologies.

About the Authors

E. V. Ambros
Central Siberian Botanical Garden SB RAS
Russian Federation

Elena V. Ambros, Cand. Sci. (Biology.), Senior Researcher

101, Zolotodolinskaya St., Novosibirsk, 630090



E. I. Chertenkova
National Research Tomsk State University
Russian Federation

Ekaterina I. Chertenkova, Master Student

36, Lenin Ave., Tomsk, 634050



S. Y. Toluzakova
National Research Tomsk State University; National Research Tomsk State University
Russian Federation

Svetlana Y. Toluzakova, Cand. Sci. (Biology), Associate Professor, National Research Tomsk State University, 36, Lenin Ave., Tomsk, 634050; Associate Professor, Department of Agronomy and Technology of Production and Processing of Agricultural Products, Tomsk Agricultural Institute Branch of Novosibirsk State Agricultural University, 19, Karl Marks St., Tomsk, 634009



E. G. Trofimova
Institute of Solid State Chemistry and Mechanochemistry SB RAS
Russian Federation

Elena G. Trofimova, Cand. Sci. (Chemistry), Researcher

18, Kutateladze St., Novosibirsk, 630128



T. I. Novikova
Central Siberian Botanical Garden SB RAS
Russian Federation

Tatyana I. Novikova, Dr. Sci. (Biology.), Head of the Laboratory of Biotechnology

101, Zolotodolinskaya St., Novosibirsk, 630090



References

1. Rastorguev S. L. Culture of isolated tissues and organs in the selection of fruit plants. Michurinsk: Izdatel'stvo Michurinskogo gosudarstvennogo agrarnogo universiteta; 2009. 170 p. (In Russian).

2. Belikova N. A., Belyakova L. V., Vysotskiy V. A., Alekseenko L. V. Economic efficiency of growing strawberry seedlings using biotechnological techniques. Sadovodstvo i vinogradarstvo = Horticulture and Viticulture. 2011;5:45–48. (In Russian).

3. Palei S., Das A. K., Rout G. R. In vitro studies of strawberry – an important fruit crop: a review. The Journal of Plant Science Research. 2015;31(2):115– 131.

4. Ambros E. V., Kotsupy O. V., Karpova E. A., Trofimova E. G., Zaytseva Y. G., Novikova T. I. In vitro adaptive responses of Fragaria ananassa Duch. plantlets induced by the mechanocomposite based on amorphous silica and flavonoids of green tea. Teoreticheskaya i prikladnaya ekologiya = Theoretical and Applied Ecology. 2019;4:116–122. (In Russian). https://doi.org/10.25750/1995-4301-2019-4-116-122.

5. Ambros E. V., Toluzakova S. Y., Shrainer L. S., Trofimova E. G., Novikova T. I. An innovative approach to ex vitro rooting and acclimatization of Fragaria × ananassa Duch. microshoots using а biogenic silica- and green-tea-catechin-based mechanocomposite. In Vitro Cellular & Developmental Biology – Plant. 2018;54(4):436–443. https://doi.org/10.1007/s11627-018-9894-1.

6. Sahebi M., Hanafi M. M., Azizi P. Application of silicon in plant tissue culture. In Vitro Cellular & Developmental Biology – Plant. 2016;52(3):226– 232. https://doi.org/10.1007/s11627-016-9757-6.

7. Kulbat K. The role of phenolic compounds in plant resistance. Biotechnology and Food Sciences. 2016;80(2):97–108.

8. Bhagwat B., Lane W. D. In vitro shoot regenerations from leaves of sweet cherry (Prunus avium) ‘Lapins’ and ‘Sweetheart’. Plant Cell Tissue and Organ Culture. 2004;78(2):173–181. https://doi.org/10.1023/B:TICU.0000022552.12449.71.

9. Meng R. G, Chen T. H. H., Finn C. E., Li Y. Improving in vitro plant regeneration from leaf and petiole explants of ‘Marion’ blackberry. HortScience. 2004;39(2):316–320. https://doi.org/10.21273/HORTSCI.39.2.316.

10. Debnath S. C. Thidiazuron in micropropagation of small fruits. In: Ahmad N., Faisal M. (eds.) Thidiazuron: from urea derivative to plant growth regulator. Springer, Singapore; 2018, p. 139–158. https://doi.org/10.1007/978-981-10-8004-3_6.

11. Passey A. J., Barrett K. J, James D. J. Adventitious shoot regeneration from seven commercial strawberry cultivars (Fragaria × ananassa Duch.) using a range of explant types. Plant Cell Reports. 2003;21(5):397–401. https://doi.org/10.1007/S00299-002-0530-4.

12. Debnath S. C. Strawberry sepal: another explant for thidiazuron-induced adventitious shoot regeneration. In Vitro Cellular & Developmental Biology – Plant. 2005;41(5):671–676. https://doi.org/10.1079/IVP2005688.

13. Landi L., Mezzetti B. TDZ, auxin and genotype effects on leaf organogenesis in Fragaria. Plant Cell Reports. 2006;25(4):281–288. https://doi.org/10.1007/s00299-005-0066-5.

14. Debnath S. C., Teixeira da Silva J. A. Strawberry culture in vitro: applications in genetic transformation and biotechnology. Fruit, Vegetable and Cereal Science and Biotechnology. 2007;1(1). 12 p.

15. Husaini A., Abdin M. Interactive effect of light, temperature and TDZ on the regeneration potential of leaf discs of Fragaria × ananassa Duch. In Vitro Cellular & Developmental Biology – Plant. 2007;43(6):576–584. https://doi.org/10.1007/s11627-007-9048-3.

16. Debnath S. C. Developing a scale-up system for the in vitro multiplication of thidiazuroninduced strawberry shoots using a bioreactor. Canadian Journal of Plant Science. 2008;88(4):737– 746. https://doi.org/10.4141/CJPS07147.

17. Murti R. H., Debnath S. C., Yeoung Y. R. Effect of high concentration of thidiazuron (TDZ) combined with 1H-indole-3-butanoic acid (IBA) on Albion strawberry (Fragaria × ananassa) cultivar plantlets induction. African Journal of Biotechnology. 2012;1(81):14696–14702. https://doi.org/10.5897/AJB12.1047.

18. Cappelletti R., Sabbadini S., Mezzetti B. The use of TDZ for the efficient in vitro regeneration and organogenesis of strawberry and blueberry cultivars. Scientia Horticulturae. 2016;207(1):117–124. https://doi.org/10.1016/j.scienta.2016.05.016.

19. Fatemeh H., Mehran A. A., Ghizan S., Azmi A. R., Hussain K. Micropropagation of strawberry cultivar Camarosa: prolific shoot regeneration from in vitro shoot tips using thidiazuron with N6-benzylaminopurine. Hortscience. 2010;45(3):453–456.

20. Quiroz K. A., Berríos M., Carrasco B., Retamales J. B., Caligari P. D. S., García-Gonzáles R. Meristem culture and subsequent micropropagation of Chilean strawberry (Fragaria chiloensis (L.) Duch.). Biological Research. 2017;50(1). Article number 20. https://doi.org/10.1186/s40659-017-0125-8.

21. Stol'nikova N. P. Strawberry culture in Western Siberia. Barnaul: Izdatel'stvo individual'nogo predprinimatelya I. A. Kolmogorov; 2014. 182 p. (In Russian).

22. Petruk V. A., Borovikova T. V., Apolinar’eva I. K. Introduction of garden strawberry cultivars in West Siberian forest steppe. Sibirskii Vestnik Sel'skokhozyaistvennoi Nauki = Siberian Herald of Agricultural Science. 2016;6:40–46. (In Russian).

23. Gamborg O. L., Eveleigh D. E. Culture methods and detection of glucanases in suspension cultures of wheat and barley. Canadian Journal of Biochemistry. 1968;46(5):417–421. https://doi.org/10.1139/o68-063.

24. Ambros E. V., Zaytseva Yu. G., Krasnikov A. A., Novikova T. I. Optimization of microshoots regeneration systems of Fragaria × ananassa (Rosaceae) genotypes perspectived for Siberian region. Rastitel'nyi mir Aziatskoi Rossii = Flora and Vegetation of Asian Russia. 2017;4:73–80. (In Russian). https://doi.org/10.21782/RMAR1995-2449-2017-4(73-80).

25. Baimukhametova E. A., Kuluev B. R. Darkening of plant tissues during in vitro cultivation and methods for its prevention. Biotekhnologiya = Bio-tekhnology. 2020;36(2):26–42. (In Russian). https://doi.org/10.21519/0234-2758-2020-36-2-26-42.

26. Kichaoui A. Y. In vitro, propagation of strawberry (Fragaria ×ananassa Duch.) through organogenesis via runner tips. Annals of Plant Sciences. 2014;3(3):619–627.

27. Demenko V. I. Problems and possibilities of micropropagation of garden plants. Izvestiya Timiryazevskoi Sel'skokhozyaistvennoi Akademii = Izvestiya of Timiryazev Agricultural Academy (TAA). 2005;2:48–58. (In Russian).

28. Rastorguyev S. L. Development of strawberry propagation methods in system in vitro. Vestnik Michurinskogo Gosudarstvennogo Agrarnogo Universiteta = Bulletin of Michurinsk State Agrarian University. 2012;1(1):10–13. (In Russian).

29. Matzneva O. V., Tashmatova L. V., Dzhafarova V. E. Proliferative activity of strawberry cultivars in vitro. Sovremennoe Sadovodstvo = Contemporary Hortikulture. 20161;77–82. Available from: journal-vniispk.ru [Accessed 08th April 2021]. (In Russian).

30. Vysotskiy V. A. Regenerative capacity of strawberry explants of different origination. Plodovodstvo i Yagodovodstvo Rossii = Pomiculture and Small Fruits Culture In Russia. 2014;40(1):98–103. (In Russian).

31. Musial C., Kuban-Jankowska A., Gorska-Ponikowska M. Beneficial properties of green tea catechins. International Journal of Molecular Sciences. 2020;21(5):1744. https://doi.org/10.3390/ijms21051744.

32. Shornikov D. G., Bryukhina S. A., Muratova S. A., Yankovskaya M. B., Papikhin R. V. In vitro conditions improvement for berry and ornamental plants micro-propagation. Vestnik Tambovskogo Universiteta. Seriya: Estestvennye i Tekhnicheskie Nauki = Tambov University Reports. Series Natural and Technical Sciences. 2010;1(2):640–645. (In Russian)

33. Kuharchik N. Fruit and soft fruit plants propagation in vitro. Nauka i Innovatsii = The Science and Innovations. 2019;6:17–21. (In Russian).

34. Murthy B. N. S., Murch S. J., Saxena P. K. Thidiazuron: A potent regulator of in vitro plant morphogenesis. In Vitro Cellular and Developmental Biology – Plant. 1998;34:267–275. https://doi.org/0.1007/BF02822732.


Review

For citations:


Ambros E.V., Chertenkova E.I., Toluzakova S.Y., Trofimova E.G., Novikova T.I. Effect of antioxidants and growth regulators on shoot organogenesis in the apical meristem culture of Fragaria × ananassa (Duchesne ex Weston) Duchesne ex Rozier. Proceedings of Universities. Applied Chemistry and Biotechnology. 2021;11(4):549-560. (In Russ.) https://doi.org/10.21285/2227-2925-2021-11-4-549-560

Views: 518


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)