Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Mitochondrial сomplexome of etiolated pea shoots

https://doi.org/10.21285/2227-2925-2021-11-4-570-580

Abstract

Studies into mitochondrial сomplexomes in various organisms provide an insight into the native organization of proteins and metabolic pathways in the organelles of the subject under study. “Complexome” is a relatively recent concept describing the proteome of protein complexes, supercomplexes, and oligomeric proteins. Complexome analysis is performed using current electrophoretic and mass spectrometric techniques, in particular, by two-dimensional electrophoresis (2D BN/SDS-PAGE) in combination with mass spectrometry (MS). Unlike 2D IEF/SDS-PAGE, this method enables analysis of not only hydrophilic proteins of the mitochondrial matrix, but also membrane proteins and their associations, thus expanding the possibilities of studying the organelle proteome. In the present work, the complexome of etiolated pea shoots was studied for the first time using 2D BN/SDS-PAGE followed by MALDI-TOF MS. To this end, 145 protein spots excised from the gel were analyzed; 110 polypeptides were identified and assigned to different functional groups. A densitometric analysis revealed that the major protein group comprised the enzymes of the mitochondrial energy system (1), accounting for an average of 43% of the total polypeptide content. The remaining 57% was primarily distributed among the following functional categories: pyruvate dehydrogenase complex and citric acid cycle (2); amino acid metabolism (3); nucleic acid processing (4); protein folding (5); antioxidant protection (6); carrier proteins (7); other proteins (8); proteins having unknown functions (9). The obtained data indicate the complex organization of the pea proteome. In addition to the enzymes of the OXPHOS system, the proteins of other functional categories are found to form supramolecular structures. It is suggested that the presence of proteins from other cellular compartments may indicate the interaction of mitochondria with the enzymes or structures of corresponding organelles. In general, the obtained data on the pea complexome represent a kind of a mitochondrial “passport” that reflects the native state of the proteome of organelles corresponding to their physiological status.

About the Authors

I. V. Ukolova
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Russian Federation

Irina V. Ukolova, Cand. Sci. (Biology), Senior Researcher

132, Lermontov St., Irkutsk, 664033



I. G. Kondratov
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Ilya G. Kondratov, Cand. Sci. (Biology), Research Scientist

16, Timiriazeva St., Irkutsk, 664003



M. A. Kondakova
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Russian Federation

Marina A. Kondakova, Cand. Sci. (Biology), Lead Engineer

132, Lermontov St., Irkutsk, 664033



I. V. Lyubushkina
Siberian Institute of Plant Physiology and Biochemistry SB RAS; Irkutsk State University
Russian Federation

Irina V. Lyubushkina, Cand. Sci. (Biology), Research Scientist Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk, 664033; Assistant Professor, Irkutsk State University, 1, K. Marx St., Irkutsk, 664033



O. I. Grabelnykh
Siberian Institute of Plant Physiology and Biochemistry SB RAS; Irkutsk State University
Russian Federation

Olga I. Grabelnykh, Dr. Sci. (Biology), Chief Researcher, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk, 664033; Professor, Irkutsk State University, 1, K. Marx St., Irkutsk, 664033



G. B. Borovskii
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Russian Federation

Gennadii B. Borovskii, Dr. Sci. (Biology), Professor, Chief Researcher

132, Lermontov St., Irkutsk, 664033



References

1. Millar A. H., Heazlewood J. L., Kristensen B. K., Braun H.-P., Møller I. M. The plant mitochondrial proteome. Trends in Plant Science. 2005;10(1):36–43. https://doi.org/10.1016/j.tplants.2004.12.002.

2. Salvato F., Havelund J. F., Chen M., Rao R. S. P., Rogowska-Wrzesinska A., Jensen O. N., et al. The potato tuber mitochondrial proteome. Plant Physiology. 2014;164(2):637–653. https://doi.org/10.1104/pp.113.229054.

3. Morgenstern M., Stiller S. B., Lübbert P., Peikert C. D., Dannenmaier S., Drepper F., et al. Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell reports. 2017;19(13): 2836–2852. https://doi.org/10.1016/j.celrep.2017.06.014.

4. Pagliarin D. J., Calvo S. E., Chang B., Sheth S. A., Vafai S. B., Ong S.-E., et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134(1):112–123. https://doi.org/10.1016/j.cell.2008.06.016.

5. Dubinin J., Braun H.-P., Schmitz U., Colditz F. The mitochondrial proteome of the model legume Medicago truncatula. Biochimica et Biophysica Acta. Proteins and Proteomics. 2011;1814(12):1658– 1668. https://doi.org/10.1016/j.bbapap.2011.08.008.

6. Senkler J., Senkler M., Eubel H., Hildebrandt T., Lengwenus C., Schertl P., et al. The mitochondrial complexome of Arabidopsis thaliana. The Plant Journal. 2017;89(6):1079–1092. https://doi.org/10.1111/tpj.13448.

7. Rode C., Senkler M., Klodmann J., Winkelmann T., Braun H. P. GelMap-a novel software tool for building and presenting proteome reference maps. Journal of Proteomics. 2011;74(10):2214– 2219. https://doi.org/10.1016/j.jprot.2011.06.017.

8. Ukolova I. V., Kondakova M. A., Kondratov I. G., Sidorov A. V., Borovskii G. B., Voinikov V. K. New insights into the organisation of the oxidative phosphorylation system in the example of pea shoot mitochondria. Biochimica et Biophysica Acta. Bioenergetics. 2020;1861(11). Art. 148264. https://doi.org/10.1016/j.bbabio.2020.148264.

9. Sunderhaus S., Eubel H., Braun H. P. Two-dimensional blue native/blue native polyacrylamide gel electrophoresis for the characterization of mitochondrial protein complexes and supercomplexes. Methods in Molecular Biology. 2007;372:315–324. https://doi.org/10.1007/978-1-59745-365-3_23.

10. Wittig I., Schägger H. Electrophoretic methods to isolate protein complexes from mitochondria. Methods in Cell Biology. 2007;80:723–741. https://doi.org/10.1016/S0091-679X(06)80033-6.

11. Taylor N. L., Heazlewood J. L., Day D. A., Millar A. H. Differential impact of environmental stresses on the pea mitochondrial proteome. Molecular and Cellular Proteomics. 2005;4(8):1122–1133. https://doi.org/10.1074/mcp.M400210-MCP200.

12. Schlame M. Protein crowding in the inner mitochondrial membrane. Biochimica et Biophysica Acta. Bioenergetics. 2021;1862(1). Art. 148305. https://doi.org/10.1016/j.bbabio.2020.148305.

13. Sumegi B., Srere P. A. Complex I binds several mitochondrial NAD-coupled dehydrogenases. The Journal of Biological Chemistry. 1984;259 (24):15040–15045.

14. Zhang Y., Beard K. F. M., Swart C., Bergmann S., Krahnert I., Nikoloski Z., et al. Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nature Communications. 2017;8. Art. 15212. https://doi.org/10.1038/ncomms15212.

15. Diez T. A., Wurtele E. S., Nikolau B. J. Purification and characterization of 3-methylcrotonylcoenzyme-A carboxylase from leaves of Zea mays. Archives of Biochemistry and Biophysics. 1994;310 (1):64–75. https://doi.org/10.1006/abbi.1994.1141.

16. Pemberton T. A., Srivastava D., Sanyal N., Henzl M. T., Becker D. F., Tanner J. J. Structural studies of yeast Δ(1)-pyrroline-5-carboxylate dehydrogenase (ALDH4A1): active site flexibility and oligomeric state. Biochemistry. 2014;53(8):1350– 1359. https://doi.org/10.1021/bi500048b.

17. Schmitz-Linneweber C., Lampe M.-K., Sultan L. D., Ostersetzer-Biran O. Organellar maturases: A window into the evolution of the spliceosome. Biochimica et Biophysica Acta. Bioenergetics. 2015;1847(9):798–808. https://doi.org/10.1016/j.bbabio.2015.01.009.

18. Pfanner N., Warscheid B., Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nature Reviews. Molecular Cell Biology. 2019;20(5):267–284. https://doi.org/10.1038/s4158 0-018-0092-0.

19. Klodmann J., Senkler M., Rode C., Braun H. P. Defining the protein complex proteome of plant mitochondria. Plant Physiology. 2011;157(2):587–598. https://doi.org/10.1104/pp.111.182352.

20. Kiirika L. M., Behrens C., Braun H. P., Col-ditz F. The mitochondrial complexome of Medicago truncatula. Frontiers in Plant Science. 2013;4. Art. 84. https://doi.org/10.3389/fpls.2013.00084.

21. Nury H., Dahout-Gonzalez C., Trézéguet V., Lauquin G., Brandolin G., Pebay-Peyroula E. Structural basis for lipid-mediated interactions between mitochondrial ADP/ATP carrier monomers. FEBS Letters. 2005;579(27):6031–6036. https://doi.org/10.1016/j.febslet.2005.09.061.

22. Mamaev D. V., Aliverdieva D. A., Bondarenko D. I., Sholtz K. F. Study of active site topography of rat liver mitochondrial dicarboxylate transporter using lipophilic substrate derivatives. Biochemistry (Moscow). 2006;71(7):800–809. https://doi.org/10.1134/s0006297906070133.

23. Kunji E. R. S., Ruprecht J. J. The mitochondrial ADP/ATP carrier exists and functions as a monomer. Biochemical Society Transactions. 2020; 48(4):1419–1432. https://doi.org/10.1042/BST20190933.

24. Graham J. W., Williams T. C. R., Morgan M., Fernie A. R., Ratcliffe R. G., Sweetlove L. J. Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. Plant Cell. 2007;19(11):3723– 3738. https://doi.org/10.1105/tpc.107.053371


Review

For citations:


Ukolova I.V., Kondratov I.G., Kondakova M.A., Lyubushkina I.V., Grabelnykh O.I., Borovskii G.B. Mitochondrial сomplexome of etiolated pea shoots. Proceedings of Universities. Applied Chemistry and Biotechnology. 2021;11(4):570-580. (In Russ.) https://doi.org/10.21285/2227-2925-2021-11-4-570-580

Views: 341


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)