Impurity-impurity interaction during the growth of UMG-Si-based mc-Si
https://doi.org/10.21285/2227-2925-2022-12-1-15-29
Abstract
This article investigates the relationship between the chemical composition and electrophysical properties of p- and n-type multicrystalline silicon ingots based on metallurgical silicon with a purity of 99.99 at.%. In particular, the role of impurity-impurity interactions in the production of multisilicon by the Bridgman vertical method is evaluated in order to identify approaches to controlling this process effectively. The phase equilibrium calculations in the “silicon–all impurities” and “silicon-impurity-oxygen” systems were carried out based on the Gibbs energy minimization in the Selector software package. The study investigates the rank correlations of the concentrations of various impurities with each other, as well as with the specified electrical resistivity (SER) and the lifetime of nonequilibrium charge carriers (NCC) in the direction of crystal growth. Pair correlations of the element distribution profiles were considered based on the role of the main factor represented by the ratio of individual impurity solubilities in solid or liquid silicon (k0), as well as from the standpoint of direct interaction between two elements. It was found that the k0 value for two individual impurities in silicon does not automatically lead to the pair correlation of their distribution profiles in the ingot. A significant effect on the distribution profiles of impurities in multisilicon with k0→0 has the factor of binding some part of the impurity into such a form that this impurity can be incorporated easily into a growing crystal. Binding may be induced by the interaction of the impurity in the melt with the oxygen background, its segregation at the grain boundaries, and its capture by the crystallization front in the composition of the liquid inclusion. Significant correlations of impurity distribution profiles in the ingot were demonstrated by the pairs whose elements interact without the formation of chemical compounds in the 25–1413 °C temperature range. The conducted phase equilibrium calculations for the “silicon–all impurities” system revealed the possibility of forming the VB2, TiB2, ZrB2, and MgTiO4 solid phases in the melt.
About the Authors
R. V. PresnyakovRussian Federation
Roman V. Presnyakov,Cand. Sci. (Physics and Mathematics),
Researcher
1A, Favorsky St., Irkutsk, 664033
S. M. Peshcherova
Russian Federation
Svetlana M. Peshcherova,Cand. Sci. (Physics and Mathematics),
Senior Researcher
1A, Favorsky St., Irkutsk, 664033,
A. G. Chueshova
Russian Federation
Anastasiya G. Chueshova, Postgraduate Student, Research Engineer
1A, Favorsky St., Irkutsk, 664033,
V. A. Bychinskii
Russian Federation
Valerii A. Bychinskii Cand. Sci. (Geology and Mineralogy),
Senior Researcher
1A, Favorsky St., Irkutsk, 664033
A. I. Nepomnyashchikh
Russian Federation
Aleksandr I. Nepomnyashchikh. Dr. Sci. (Physics and Mathematics),
Chief researcher
1A, Favorsky St., Irkutsk, 664033,
References
1. Nakajima K., Usami N. Crystal growth of silicon for solar cells. Berlin: Springer; 2009. 269 p.
2. Osinniy V., Bomholt P., Nylandsted Larsen A., Enebakk E., Søiland A.-K., Tronstad R., et al. Factors limiting minority carrier lifetime in solar grade silicon produced by the metallurgical route. Solar Energy Materials and Solar Cells. 2011;95(2):564- 572. https://doi.org/10.1016/j.solmat.2010.09.017.
3. Chen J.-W., Milnes A. G. Energy levels in silicon. Annual Review of Materials Research. 1980;10:157-228. https://doi.org/10.1146/annurev.ms.10.080180.001105.
4. Bathey B. R., Cretella M. C. Solar-grade silicon. Journal of Materials Science. 1982;17:3077- 3096. https://doi.org/10.1007/BF01203469.
5. Nepomnyashchikh A. I., Presnyakov R. V. Distribution of impurities in the process of growing multicrystalline silicon. Neorganicheskie materialy = Inorganic Materials. 2018;54(4):335-339. (In Russian). https://doi.org/10.7868/S0002337X18040012.
6. Nepomnyashchikh A. I., Presnyakov R. V., Antonov P. V., Berdnikov V. S. Impact of growth mode on multicrystalline silicon ingot macrostructure. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2012;(1):28-34. (In Russian).
7. Basin A. S., Shishkin A. V. Obtaining silicon wafers for solar energy. Methods and technologies. Novosibirsk: Institut teplofiziki SO RAN; 2000. 195 p. (In Russian).
8. Chase M. W., Davies C. A., Downey J. R., Frurip D. J., McDonald R. A., Syverud A. N. JANAF thermochemical tables. Journal of Physical and Chemical Reference Data. 1985;(14):927-1856.
9. Martorano M. A., Ferreira Neto J. B., OliveiraT. S., Tsubaki T. O. Refining of metallurgical silicon by directional solidification. Materials Science and Engineering: B. 2011;176(3):217-226. https://doi.org/ 10.1016/j.mseb.2010.11.010.
10. Yokokawa H. Tables of thermodynamic functions for inorganic compounds. Journal National Chemical Laboratory for Industry. 1988;83:27-121.
11. Müller G. Crystal Growth from the Melt. Convection and inhomogeneities; 1988. 136 p. (Russ. ed.: Myuller G. Vyrashchivanie kristallov iz rasplava. Konvektsiya i neodnorodnosti. Moscow: Mir; 1991. 149 p.).
12. Barannik S. V., Kanishchev V. N. Features of the initial transient process of a binary melt crystallization. Kristallografiya = Crystallography Reports. 2010;55(5):935-939. (In Russian).
13. Beatty K. M., Jackson K. A. Monte Carlo modeling of silicon crystal growth. Journal of Crystal Growth. 2000;211(1-4):13-17. https://doi.org/10.10 16/S0022-0248(99)00836-2.
14. Dalaker H. Thermodynamic computations of the interaction coefficients between boron and phosphorus and common impurity elements in liquid silicon. Computer Methods in Materials Science. 2013;13(3):407-411.
15. Tang K., Øvrelid E. J., Tranell G., Tangstad M. A thermochemical database for the solar cell silicon materials. Materials Transactions. 2009;50(8):1978- 1984. https://doi.org/10.2320/matertrans.M2009110.
16. Prokof'eva V. K., Sokolov E. B., Suanov M. E., Karamov A. G. Influence of Ti, Zr, Hf impurities on the process of oxygen removal of silicon. Vysokochistye veshchestva. 1988;6:72-74. (In Russian).
17. Sokolov E. B., Prokof'eva V. K., Belyanina E. V. Silicon obtained using melt gettering. Elektronnaya promyshlennost'. 1995;4(5):68-69. (In Russian).
18. Harbeke G. Polycrystalline semiconductors. Physical properties and applications; 1985. 248 p. (Russ. ed.: Kharbeke G. Polikristallicheskie poluprovodniki. Fizicheskie svoistva i primeneniya. Moscow: Mir; 1989. 341 p.).
19. Ravi K. V. Imperfections and impurities in semiconductor silicon; 1981. 472 p. (Russ. ed.: Reivi K. Defekty i primesi v poluprovodnikovom kremnii. Moscow: Mir; 1984. 475 p.). 2
20. Krasnikov G. Ya., Zaitsev N. A. Siliconsilicon dioxide submicron VLSI system. Moscow: Tekhnosfera; 2003. 384 p. (In Russian).
21. Knack S. Copper-related defects in silicon. Materials Science in Semiconductor Processing. 2004;7(3): 125-141. https://doi.org/10.1016/j.mssp.2004.06.002.
22. Dubois S., Enjalbert N., Garandet J. P. Effects of the compensation level on the carrier lifetime of crystalline silicon. Applied Physics Letters. 2008;93 (3):032114. https://doi.org/10.1063/1.2961030.
Review
For citations:
Presnyakov R.V., Peshcherova S.M., Chueshova A.G., Bychinskii V.A., Nepomnyashchikh A.I. Impurity-impurity interaction during the growth of UMG-Si-based mc-Si. Proceedings of Universities. Applied Chemistry and Biotechnology. 2022;12(1):15-29. (In Russ.) https://doi.org/10.21285/2227-2925-2022-12-1-15-29