Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Evaluation of the proteolytic activity of new cryoresistant lactobacillus strains

https://doi.org/10.21285/2227-2925-2022-12-1-76-86

Abstract

The search for new functionally active strains of lactic acid bacteria, together with the development of domestic competitive starter cultures on their basis, are important directions of contemporary food biotechnology. Proteolytic activity represents one of the criteria for selecting lactic acid bacteria strains for their subsequent use in food production and largely determines the quality characteristics of the finished product. The present study aims to evaluate the proteolytic activity of 15 new cryoresistant strains of Lactobacillus genus lactic acid bacteria having a number of functional and technological properties. According to the results obtained, all strains demonstrated higher proteolytic activity in alkaline media and those close to neutral (pH = 6.5). In slightly acidic media, the strains under study showed minimal values of proteolytic activity, except for L. fermentum 12 and L. plantarum 21 strains. Strains L. casei 32, L. casei 36, L. fermentum 10, and L. acidophilum 9 (48.9–52.3 µg tyrosine/mL·min) showed the maximum proteolytic activity. The minimal proteolytic activity was characteristic of L. fermentum 12, L. fermentum 24, and L. plantarum 1 (27.7–28.9 µg tyrosine/mL·min). The studied paramenter depends on the conditions of proteolysis (substrate, medium pH) and represents an individual strain characteristic independent of the lactobacillus species membership. According to the results obtained, L. casei 32, L. casei 36, and L. fermentum 10 cryoresistant strains, manifesting high proteolytic activity and effectively affecting various protein substrates (casein, albumin, haemoglobin) in a wide range of medium pH values, can be recommended for inclusion in the composition of starter cultures for the production of fermented food products.

About the Authors

S. V. Kitaevskaya
Kazan National Research Technological University
Russian Federation

Svetlana V. Kitaevskaya, Cand. Sci. (Engineering), Associate Professor

68, K. Marx St., Kazan, 420015



V. Y. Ponomarev
Kazan National Research Technological University
Russian Federation

Vsevolod Y. Ponomarev, Cand. Sci. (Engineering), Associate Professor,

68, K. Marx St., Kazan, 420015



O. A. Reshetnik
Kazan National Research Technological University
Russian Federation

Olga A. Reshetnik, Dr. Sci. (Engineering), Professor,Head of the Department of Food production technology

68, K. Marx St., Kazan, 420015



References

1. Rajoka M. S. R., Shi J. L., Zhu J., Shao D., Huang Q., Jang H., et al. Capacity of lactic acid bacteria in immunity enhancement and cancer prevention. Аpplied Microbiology and Biotechnology. 2017;101(1):35-45. https://doi.org/10.1007/s00253- 016-8005-7.

2. Yousefi B., Eslami M., Ghasemian A., Kokhaei P., Farrohi S. A., Darabi N. Probiotics importance and their immunomodulatory properties. Journal of Cellular Physiology. 2019;234(6):8008- 8018. https://doi.org/10.1002/jcp.27559.

3. Kerry R. G., Patra J. K., Gouda S., Park Y., Shin H.-S., Das G. Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis. 2018;26(3):927-939. https://doi.org/10.10 16/j.jfda.2018.01.002.

4. Golovin M. A., Ganina V. I., Mashentseva N. G. Probiotic bacteria reducing cholesterol in milk products. Molochnaya promyshlennost' = Dairy Industry. 2014;5:46-47. (In Russian).

5. Liu C.-F., Tseng K.-C., Chiang S.-S., Lee B.-H., Hsu W.-H., Pan T.-M. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. Journal of the Science of Food and Agriculture. 2011;91(12):2284- 2291. https://doi.org/10.1002/jsfa.4456.

6. Uskova M. A., Kravchenko L. V. Antioxidant properties of lactic acid bacteria – probiotic and yogurt strains. Voprosy pitaniya = Problems of Nutrition. 2009;78(2):18-24. (In Russian).

7. Vekovtsev A. A., Serba E. M., Byambaa B., Poznyakovsky V. M. Microbiome and biohacking: health management paradigm. Industriya Pitaniya = Food Industry. 2021;6(2):16-22. (In Russian). https://doi.org/10.29141/2500-1922-2021-6-2-2.

8. Raveschot C., Cudennec B., Coutte F., Flahaut C., Fremont M., Drider D., et al. Production of bioactive peptides by lactobacillus species: from gene to application. Frontiers in Microbiology. 2018;9. Article number 2354. https://doi.org/10. 3389/fmicb.2018.02354.

9. Shah N. P. Functional cultures and health benefits. International Dairy Journal. 2007;17(11): 1262-1277. https//:doi.org/10.1016/j.idairyj.2007.01.014.

10. Rajoka M. S. R., Wu Y. G., Mehwish H. M., Bansal M., Zhao L. Q. Lactobacillus exopolysaccharides: New perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health. Trends in Food Science and Technology. 2020;103:36-48. https://doi.org/10.10 16/j.tifs.2020.06.003.

11. Lynch K. M., Zannini E., Coffey A., Arendt E. K. Lactic acid bacteria exopolysaccharides in foods and beverages: lsolation, properties, characterization, and health benefits. Annual Review of Food Science and Technology. 2018;9(9):155-176. https://doi. org/10.1146/annurev-food-030117-012537.

12. Maske B. L., de Melo Pereira G. V., S Vale A., de Garvalho Neto D. P., Karp S. G., Viesser J. A., et al. A review on enzyme-producing lactobacilli associated with the human digestive process: From metabolism to application. Enzyme and Microbial Technology. 2021;149. Article number 109836. https://doi.org/10.1016/j.enzmictec.2021.109836.

13. Leroy F., Verluyten J., de Vuyst L. Functional meat starter cultures for improved sausage fermentation. International Journal of Food Microbiology. 2006;106(3):270-285. https//:doi.org/10.1016/j. ijfoodmicro.2005.06.027.

14. Artyukhova S. I., Gavrilova Yu. A. Probiotics and prebiotics in biotechnology for bio products production. Omsk: Izdatel'stvo Omskogo gosudarstvennogo tekhnicheskogo universiteta; 2012. 112 p. (In Russian).

15. Sanlier N., Gokcen B. B., Sezgin A. C. Health benefits of fermented foods. Сritical Reviews in Food Science and Nutrition. 2019;59(3):506-527. https//:doi.org/10.1080/10408398.2017.1383355.

16. Prosekov A. Yu., Ostroumov L. A. Innovation management biotechnology of starter cultures. Tehnika i tehnologiya pishchevych proizvodstv = Food Processing: Techniques and Technology. 2016;43(4):64-69. (In Russian).

17. Chen C., Zhao S., Hao G., Yu H., Tian H., Zhao G. Role of lactic acid bacteria on the yogurt flavor: A review. International Journal of Food Properties. 2017;20(1):316-330. https//:doi.org/10.1080/ 10942912.2017.1295988.

18. Kieliszek M., Pobiega K., Piwowarek K., Kot A. M. Characteristics of the proteolytic enzymes Produced by lactic acid bacteria. Molecules. 2021;26(7):1858.https//:doi.org/10.3390/molecules26071858.

19. Lim Y. H., Foo H. L., Loh T. C., Mohamad R., Abdullah N. Comparative studies of versatile extracellular proteolytic activities of lactic acid bacteria and their potential for extracellular amino acid productions as feed supplements. Journal of Animal Science and Biotechnology. 2019;10. Article number 15. 13 p. https://doi.org/10.1186/s40104-019-0323-z.

20. Sun F., Hu Y., Yin X., Kong B., Qin L. Production, purification and biochemical characterization of the microbial protease produced by Lactobacillus fermentum R6 isolated from Harbin dry sausages. Process Biochemistry. 2020;89:37-45. https://doi.org/10.1016/j.procbio.2019.10.029.

21. Raveschot C., Cudennec B., Coutte F., Flahaut C., Fremont M., Drider D., et al. Production of bioactive peptides by Lactobacillus species: from gene to application. Frontiers in Microbiology. 2018;9. Article number 2354. https://doi. org/10.3389/fmicb.2018.02354.

22. Elias R. J., Kellerby S. S., Decker E. A. Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition. 2008;48(5): 430-441. https://doi.org/10.1080/10408390701425615.

23. Tagliazucchi D., Martini S., Solieri L. Bioprospecting for bioactive peptide production by lactic acid bacteria isolated from fermented dairy food. Fermentation. 2019;5(4):96.https://doi.org/10.3390/fermentation5040096.

24. Agafonova A. N., Bagaeva T. V., Kitaevskaya S. V., Romanova N. K., Reshetnik O. A. Study of the influence of lactic acid bacteria on hydrolytic and oxidation processes in stuffed meat. Helix. 2019;9(5):5318-5322. https://doi.org/10.29042/2019- 5318-5322.

25. Kitaevskaya S. V. Resistance of lactic acid bacteria for low temperature processing. Vestnik Kazanskogo tehnologicheskogo universiteta = Bulletin of Kazan Technological University. 2014;17 (23):214-217. (In Russian).

26. Cao C.-C., Feng M.-Q., Sun J., Xu X.-L., Zhou G.-H. Screening of lactic acid bacteria with high protease activity from fermented sausages and antioxidant activity assessment of its fermented sausages. CyTA – Journal of Food. 2019;17(1):347- 354. https://doi.org/10.1080/19476337.2019.1583687.

27. Grujić R., Savanović D. Analysis of myofibrillar and sarcoplasmic proteins in pork meat by capillary gel electrophoresis. Foods and Raw Materials. 2018;6(2):421-428. http://doi.org/10.21603/2308-40 57-2018-2-421-428.

28. Atanasova J., Moncheva P., Ivanova I. Proteolytic and antimicrobial activity of lactic acid bacteria grown in goat milk. Biotechnology & Biotechnological Equipment. 2014;28(6):1073-1078. http:// doi.org/10.1080/13102818.2014.971487.

29. Bah C. S., Bekhit A. E.-D. A., Carne A., McConnell M. A. Production of bioactive peptide hydrolysates from deer, sheep and pig plasma using plant and fungal protease preparations. Food Chemistry. 2015;176:54- 63. https://doi.org/10.1016/j.foodchem.2014.12.025.

30. Nielsen P. M., Petersen D., Dambmann C. Improved method for determining food protein degree of hydrolysis. Journal of Food Fcience. 2001;66(5):642-646. https://doi.org/10.1111/j.1365- 2621.2001.tb04614.x.

31. Hamagaeva I. S., Zherebjat'eva O. A., Shchekotova A. V. Proteolytic activity of lactobacilli. Molochnaya promyshlennost' = Dairy Industry. 2016;11:29-31. (In Russian). 3

32. Serba E. M., Overchenko M. B., Agashicheva K. L., Rimareva L. V. Universal method of definition of proteolytic activity of fermental preparations for the food-processing industry. Khranenie i pererabotka sel'khozsyr'ya = Storage and Processing of Farm Products. 2010;6:33-35. (In Russian).


Review

For citations:


Kitaevskaya S.V., Ponomarev V.Y., Reshetnik O.A. Evaluation of the proteolytic activity of new cryoresistant lactobacillus strains. Proceedings of Universities. Applied Chemistry and Biotechnology. 2022;12(1):76-86. (In Russ.) https://doi.org/10.21285/2227-2925-2022-12-1-76-86

Views: 564


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)