Synthesis of a graft copolymer of polybutyl acrylate on fish collagen substratum using the RbTe1.5W0.5O6 complex oxide photocatalyst
https://doi.org/10.21285/2227-2925-2022-12-1-97-108
Abstract
In order to obtain a graft copolymer of polybutyl acrylate (PBA) on the substratum of emulsified fish collagen, RbTe1.5W0.5O6 complex oxide was used as a photocatalyst under visible light irradiation (λ = 400–700 nm). The emulsion was prepared by mixing the monomer and the aqueous collagen solution in a ratio of 1:2. Next, the catalyst was introduced into the resulting mixture, followed by stirring and ultrasound treatment. Before the reaction, the emulsion was bubbled with argon for 15 min. The reaction was carried out in an argon flow with continuous stirring. The radiation source was a 30 W visible light LED lamp placed at a distance of no more than 10 cm from the reaction mixture. At the end of the reaction, the emulsified organic phase was extracted with toluene, followed by phase isolation. In order to isolate the catalyst, the aqueous part of the solution was centrifuged for 30 min. Subsequently, the powder was repeatedly washed in distilled water at a temperature of 50 °C. The washed catalyst was dried, and the surface of the oxide after emulsion polymerization was examined using a scanning electron microscope. For the PBA–collagen graft copolymer emulsion isolated from the aqueous phase, molecular weight characteristics confirming the formation of a graft copolymer were obtained. It was established that the nitrogen content of amino acid residues in the PBA–collagen graft copolymer is significantly lower than in collagen, which indicates the formation of a graft copolymer. An analysis of films and sponges of PBA–collagen graft copolymer samples by scanning electron microscopy (SEM) showed a new structural-relief organization compared to collagen. A SEM analysis of the RbTe1.5W0.5O6 powder surface after the synthesis of the PBA–collagen graft copolymer detected fragments of polymer macromolecules on its surface. This can be explained by the fact that the catalyst used not only is a source of hydroxyl radicals, but сan also participate in the formation of a polymer on the powder surface due to the abstraction of a hydrogen atom from hydroxyl groups on its surface under the action of a hydroxyl radical.
About the Authors
L. L. SemenychevaRussian Federation
Lyudmila L. Semenycheva, Dr. Sci. (Chemistry), Senior Researcher,
Head of the Laboratory of Petrochemistry
23, Gagarin Ave., 603022, Nizhny Novgorod
M. A. Uromicheva
Russian Federation
Marina A. Uromicheva, Postgraduate Student
23, Gagarin Ave., 603022, Nizhny Novgorod
V. O. Chasova
Russian Federation
Viktoriya O. Chasova, Junior Researcher,
Laboratory of Petrochemistry, Research Institute of Chemistry
23, Gagarin Ave., 603022, Nizhny Novgorod
D. G. Fukina
Russian Federation
Diana G. Fukina, Cand. Sci. (Chemistry), Researcher, High-purity Materials Technology Laboratory
23, Gagarin Ave., 603022, Nizhny Novgorod
A. V. Koryagin
Russian Federation
Andrei V. Koryagin, Junior Researcher, High-purity Materials Technology Laboratory, Research Institute of Chemistry
23, Gagarin Ave., 603022, Nizhny Novgorod
N. B. Valetova
Russian Federation
Natal'ya B. Valetova, Cand. Sci. (Chemistry), Senior Scientist,
Laboratory of Petrochemistry, Research Institute of Chemistry
23, Gagarin Ave., 603022, Nizhny Novgorod
E. V. Suleimanov
Russian Federation
Evgenii V. Suleimanov, Dr. Sci. (Chemistry), Professor,
Director of the Research Institute of Chemistry
23, Gagarin Ave., 603022, Nizhny Novgorod
References
1. Schweizer T. A., Shambat S. M., Haunreiter V. D., Mestres C. A., Weber A., Maisano F., et al. Polyester vascular graft material and risk for intracavitary thoracic vascular graft infection. Emerging Infectious Diseases. 2020;26(10):2448-2452. https://doi.org/ 10.3201/eid2610.191711.
2. Ivanov A. A., Popova O. P., Danilova T. I., Kuznetsova A. V. Strategy of the selection and use of scaffolds in bioengineering. Uspekhi sovremennoi biologii = Biology Bulletin Reviews. 2019;139(2): 196-205. (In Russian). https://doi.org/10.1134/S00 42132419020042.
3. Zhang D., Wu X., Chen J., Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioactive Materials. 2018;3(1):129-138. https://doi.org/10.1016/j.bioactmat.2017.08.004.
4. Al Kayal T., Losi P., Pierozzi S., Soldani G. A new method for fibrin-based electrospun/sprayed scaffold fabrication. Scientific Reports. 2020;10(1):5111- 5114. https://doi.org/10.1038/s41598-020-61933-z.
5. Sousa R. O., Martins E., Carvalho D. N., Alves A. L., Oliveira C., Duarte A. R. C., et al. Collagen from atlantic cod (gadus morhua) skins extracted using CO2 acidified water with potential application in healthcare. Journal of Polymer Research. 2020;27(3): 73-81. https://doi.org/10.1007/s10965-020-02048-x.
6. Castilho M., Hochleitner G., Wilson W., Rietbergen B., Dalton P. D., Groll J., et al. Mechanical behavior of a soft hydrogel reinforced with threedimensional printed microfibre scaffolds. Scientific Reports. 2018;8(1):1245-1255. https://doi.org/10.10 38/s41598-018-19502-y.
7. Zhang Q., Wang Q., Lv Sh., Lu J. Comparison of collagen and gelatin extracted from the skins of nile tilapia (Oreochromis niloticus) and channel catfish (Ictalurus punctatus). Food Bioscience. 2016;13:41-48.
8. Miele D., Catenacci L., Rossi S., Sandri G., Sorrenti M., Terzi A., et al. Collagen/PCL nanofibers electrospun in green solvent by DOE assisted process. An insight into collagen contribution. Materials (Basel). 2020;13(21):4698-4721. https://doi.org/10. 3390/ma13214698.
9. Cao J., Wang P., Liu Y., Zhu C., Fan D. Double crosslinked HLC-CCS hydrogel tissue engineering scaffold for skin wound healing. International Journal of Biological Macromolecules. 2020;155:625-635. https://doi.org/10.1016/j.ijbiomac.2020.03.236.
10. Borrego-González S., Dalby M. J., DíazCuenca A. Nanofibrous gelatin-based biomaterial with improved biomimicry using D-periodic self-assembled atelocollagen. Biomimetics. 2021;6(1):20-38. https:// doi.org/10.3390/biomimetics6010020.
11. Wei X., Zhao Y., Zheng J., Cao Q. Refolding behavior of urea-induced denaturation collagen. Macromolecular Research. 2021;29(6):402-410. https:// doi.org/1007/s13233-021-9047-y.
12. Perez-Puyana V., Jiménez-Rosado M., Rubio-Valle J., Guerrero A., Romero A. Gelatin vs collagen-based sponges: evaluation of concentration, additives and biocomposites. Journal of Polymer Research. 2019;26(8):190-198. https://doi.org/10.10 07/s10965-019-1863-9.
13. He L., Li S., Xu C., Wei B., Zhang J., Xu Yu., et al. A new method of gelatin modified collagen and viscoelastic study of gelatin-collagen composite hydrogel. Macromolecular Research. 2020;28:861- 868. https://doi.org/10.1007/s13233-020-8103-3.
14. Carrion B., Souzanchi M. F., Wang V. T., Tiruchinapally G., Shikanov A., Putnam A. J., et al. The synergistic effects of matrix stiffness and composition on the response of chondroprogenitor cells in a 3D precondensation microenvironment. Advanced Healthcare Materials. 2016;5(10):1192- 1202. https://doi.org/10.1002/adhm.201501017.
15. Vedhanayagam M., Anandasadagopan S., Nair B. U., Sreeram K. J. Polymethyl methacrylate (PMMA) grafted collagen scaffold reinforced by PdO–TiO2 nanocomposites. Materials Science and Engineering: C. 2020;108:110378-110422. https:// doi.org/10.1016/j.msec.2019.110378.
16. Jiang H. J., Xu J., Qiu Z.-Y., Ma X.-L., Zhang Z.-Q., Tan X.-X., et al. Mechanical properties and cytocompatibility improvement of vertebroplasty PMMA bone cements by incorporating mineralized collagen. Materials (Basel). 2015;8(5):2616-2634.
17. Hou J., Ren X., Guan Sh., Duan L., Hui Gao G., Kuai Y., et al. Rapidly recoverable, anti-fatigue, supertough double-network hydrogels reinforced by macromolecular microspheres. Soft Matter. 2017;13(7):1357- 1363. https://doi.org/10.1039/C6SM02739C.
18. Wang X., Chen K., Li W., Hao D., Guo P. A paper sizing agent based on leather collagen hydrolysates modified by glycol diglycidyl ether and its compound performance. International Journal of Biological Macromolecules. 2019;124:1205-1212. https://doi.org/10.1016/j.ijbiomac.2018.12.047.
19. Wang Q., Cheng X., Li J., Jin H. Hydrothermal synthesis and photocatalytic properties of pyrochlore Sm2Zr2O7 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry. 2016;321:48-54. https://doi.org/10.1016/j.jphotochem.2016.01.011.
20. Hou J., Jiao Sh., Zhu H., Kumar R. V. Bismuth titanate pyrochlore microspheres: Directed synthesis and their visible light photocatalytic activity. Journal of Solid State Chemistry. 2011;184(1):154- 158. https://doi.org/10.1016/j.jssc.2010.11.017.
21. Wang W., Liang Sh., Bi J., Yu J. C., Wong P. K., Wu L. Lanthanide stannate pyrochlores Ln2Sn2O7 (Ln = Nd, Sm, Eu, Gd, Er, Yb) nanocrystals: synthesis, characterization, and photocatalytic properties. Materials Research Bulletin. 2014;56:86-91. https:// doi.org/10.1016/j.materresbull.2014.01.048.
22. Venkataswamy P., Sudhakar Reddy Ch., Gundeboina R., Sadanandam G., Veldurthi N. K., Vithal M. Nanostructured KTaTeO6 and Ag-doped KTaTeO6 defect pyrochlores: promising photocatalysts for dye degradation and water splitting. Electronic Materials Letters. 2018;14:446-460. https:// doi.org/10.1007/s13391-018-0055-9.
23. Guje R., Ravi G., Palla S., Rao K. N., Vithal M. Synthesis, characterization, photocatalytic and conductivity studies of defect pyrochlore KM0.33Te1.67O6 (M=Al, Cr and Fe). Materials Science and Engineering: B. 2015;198:1-9. https://doi.org/ 10.1016/j.mseb.2015.03.010.
24. Fukina D. G., Suleimanov E. V., Boryakov A. V., Zubkov S. Yu., Koryagin A. V., Volkova N. S., et al. Structure analysis and electronic properties of ATe4+0.5Te6+1.5-xM6+ xO6 (A=Rb, Cs, M6+=Mo, W) solid solutions with β-pyrochlore structure. Journal of Solid State Chemistry. 2021;293:121787. https://doi. org/10.1016/j.jssc.2020.121787.
25. Ali N., Ali F., Khurshid R., Ikramullah, Ali Z., Afzal A., et al. TiO2 nanoparticles and epoxy-TiO2 nanocomposites: a review of synthesis, modification strategies, and photocatalytic potentialities. Journal of Inorganic and Organometallic Polymers and Materials. 2020;30:4829-4846. https://doi.org/10.1007/ s10904-020-01668-6.
26. Zhang D., Bi C., Zong Z., Fan Yu. Three different Co(II) metal–organic frameworks based on 4,4′-Bis(imidazolyl)diphenyl ether: syntheses, crystal structure and photocatalytic properties. Journal of Inorganic and Organometallic Polymers and Materials. 2020;30:5148-5156. https://doi.org/10.1007/s1 0904-020-01657-9.
27. Hussain M. Z., Yang Z., Linden B. V. D., Huang Z., Jia Q., Cerrato E., et al. Surface functionalized N-C-TiO2/C nanocomposites derived from metal-organic framework in water vapour for enhanced photocatalytic H2 generation. Journal of Energy Chemistry. 2021;57:485-495. https://doi.org/10. 1016/j.jechem.2020.08.048.
28. Wang W., Wang X., Gan L., Ji X. All-solidstate Z-scheme BiVO4−Bi6O6(OH)3(NO3)3 heterostructure with prolonging electron-hole lifetime for enhanced photocatalytic hydrogen and oxygen evolution. Journal of Materials Science & Technology. 2021;77:117- 125. https://doi.org/10.1016/j.jmst.2020.09.051.
29. Wang J., Sun S., Zhou R., Li Y., He Z., Ding H., et al. A review: synthesis, modification and photocatalytic applications of ZnIn2S4. Journal of Materials Science & Technology. 2021;78:1-19. https://doi. org/10.1016/j.jmst.2020.09.045.
30. Wang H., Zhang J.-R., Wu X.-F., Wang Ch., Li Ya., Ci L.-J., et al. Study on Ag2WO4/g-C3N4 nanotubes as an efficient photocatalyst for degradation of rhodamine B. Journal of Inorganic and Organometallic Polymers and Materials. 2020;30:4847-4857. https://doi. org/10.1007/s10904-020-01756-7.
31. Tavakoli-Azar T., Mahjoub A. R., Sadjadi M. S., Farhadyar N., Sadr M. H. Synthesis and characterization of a perovskite nanocomposite of CdTiO3@S with orthorhombic structure: investigation of photoluminescence properties and its photocatalytic performance for the degradation of congo red and crystal violet under sunlight. Journal of Inorganic and Organometallic Polymers and Materials. 2020;30:4858-4875. https://doi.org/10.1007/s10904-020-01762-9.
32. Mao W., Zhang L., Wang T., Bai Y., Guan Y. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater. Frontiers of Environmental Science & Engineering. 2021;15. Article number 52. https://doi.org/10.1007/s11783-020-1344-8.
33. Chanu W. C., Gupta A., Singh M. K., Pandey O. P. Group V elements (V, Nb and Ta) doped CeO2 particles for efficient photo-oxidation of methylene blue dye. Journal of Inorganic and Organometallic Polymers and Materials. 2021;31:636-647. https://doi.org/10.1007/s10904-020-01822-0.
34. Lobry E., Bah A. S., Vidal L., Oliveros E., Braun A. M., Criqui A., et al. Colloidal and supported TiO2: toward nonextractable and recyclable photocatalysts for radical polymerizations in aqueous dispersed media. Macromolecular Chemistry and Physics. 2016;217(20):2321-2329. https://doi.org/ 10.1002/macp.201600150.
35. Semenycheva L. L., Chasova V. O., Fukina D. G., Koryagin A. V., Valetova N. B., Suleymanov E. V. Synthesis of “polymethyl methacrylate-collagen” graft copolymer, using photocatalyst – complex oxide RbTe1.5W0.5O6. Vse materialy. Entsiklopedicheskii spravochnik = Polymer Science. Series D. 2021;(7):15-23. (In Russian).
36. Semenycheva L., Chasova V., Matkivskaya J., Fukina D., Koryagin A., Belaya T., et al. Features of polymerization of methyl methacrylate using a photocatalyst – the complex oxide RbTe1.5W0.5O6. Journal of Inorganic and Organometallic Polymers and Materials. 2021;31:3572-3583. https://doi.org/10.100 7/s10904-021-02054-6.
37. Moad D., Solomon D. The chemistry of radical polymerization. Elsevier; 2006. 639 p. https://doi. org/10.1016/b978-0-08-044288-4.x5015-8.
38. Semenycheva L. L., Astanina M. V., Kuznetsova Yu. L., Valetova N. B., Geras'kina E. V., Tarankova O. A. Method for production of acetic dispersion of high molecular fish collagen. Patent RF, no. 2567171; 2015. (In Russian).
39. Uromicheva M. A., Kuznetsova Y. L., Valetova N. B., Mitin A. V., Semenycheva L. L., Smirnova O. N. Synthesis of grafted polybutyl acrylate copolymer on fish collagen. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2021;11(1):16-25. https://doi.org/10.21285/2227-292 5-2021-11-1-16-25.
40. Oliveira V. M., Assis C. R. D., Costa B. A. M., Neri R. C. A., Monte F. T. D., Costa Vasconcelos Freitas H. M. S., et al. Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products. Journal of Molecular Structure. 2021;1224:129023. https://doi.org/10.1016/j.molstruc.2020.129023.
Review
For citations:
Semenycheva L.L., Uromicheva M.A., Chasova V.O., Fukina D.G., Koryagin A.V., Valetova N.B., Suleimanov E.V. Synthesis of a graft copolymer of polybutyl acrylate on fish collagen substratum using the RbTe1.5W0.5O6 complex oxide photocatalyst. Proceedings of Universities. Applied Chemistry and Biotechnology. 2022;12(1):97-108. (In Russ.) https://doi.org/10.21285/2227-2925-2022-12-1-97-108