Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Energy profile of formal 1,2-dyotropic rearrangement of diarylethenes

https://doi.org/10.21285/2227-2925-2022-12-1-153-159

Abstract

Diarylethenes with thiophene substituents belong to photoswitchable compounds (photoswitches or photochromes). Upon UV irradiation, their colorless open-ring isomers (DAE-o) convert to the colored closed-ring isomers (DAE-c), while the back reaction is induced only by visible light irradiation. A multiple photoswitching of diarylethenes usually results in irreversible photorearrangement of DAE-c to the so-called annulated isomers DAE-a, that are stable thermally and photochemically. In the present communication, structures of a series of diarylethenes as well as their isomers were optimized on the B3LYP/6-31G(d) level of theory. It was disclosed for the first time, that DAE-a destabilized relatively DAE-c by 1.71–14.00 kcal/mol. These results are important for design of photocontrollable molecules and materials, operated in the oneway (permanent manner).

About the Authors

E. K. Kouame
Irkutsk National Research Technical University; A. E. Favorsky Irkutsk Institute of Chemistry SB RAS
Russian Federation

Eric Koffi Kouame, Postgraduate Student


1, Favorsky St., Irkutsk, 664033; 83, Lermontov St., Irkutsk, 664074



A. G. Lvov
Irkutsk National Research Technical University; A. E. Favorsky Irkutsk Institute of Chemistry SB RAS
Russian Federation

Andrey G. Lvov, Cand. Sci. (Chemistry), Leading Researcher

1, Favorsky St., Irkutsk, 664033; 83, Lermontov St., Irkutsk, 664074



References

1. Bouas-Laurent H., Durr H. Organic photochromism. Pure and Applied Chemistry. 2001;73(4): 639-665. http://dx.doi.org/10.1351/pac200173040639.

2. Irie M., Mohri M. Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. The Journal of Organic Chemistry. 1988;53(4):803-808. https://doi.org/10.1021/jo 00239a022.

3. Hanazawa M., Sumiya R., Horikawa Y., Irie M. Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis (2-methylbenzo[b]thiophen-3-yl)perfluorocyclocoalkene derivatives. Journal of the Chemical Society, Chemical Communications. 1992;(3):206-207. https://doi.org/ 10.1039/C39920000206.

4. Irie M., Fukaminato T., Matsuda K., Kobatake S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chemical Reviews. 2014;114(24):12174-12277. https://doi. org/10.1021/cr500249p.

5. Irie M., Lifka T., Uchida K., Kobatake S., Shindo Y. Fatigue resistant properties of photochromic dithienylethenes: by-product formation. Chemical Communications. 1999;8:747-750. https:// doi.org/10.1039/A809410A.

6. Herder M., Schmidt B. M., Grubert L., Pätzel M., Schwarz J., Hecht S. Improving the fatigue resistance of diarylethene switches. Journal of the American Chemical Society. 2015;137(7):2738- 2747. https://doi.org/10.1021/ja513027s.

7. Herder M., Eisenreich F., Bonasera A., Grafl A., Grubert L., Patzel M., et al. Light-controlled reversible modulation of frontier molecular orbital energy levels in trifluoromethylated diarylethenes. Chemistry – A European Journal. 2017;23(15):3743-3754. https://doi.org/10.1002/chem.201605511.

8. Higashiguchi K., Matsuda K., Kobatake S., Yamada T., Kawai T., Irie M. Fatigue mechanism of photochromic 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene. Bulletin of the Chemical Society of Japan. 2000;73(10):2389-2394. https://doi.org/ 10.1246/bcsj.73.2389.

9. Lvov A. G., Mörtel M., Heinemann F. W., Khusniyarov M. M. One-way photoisomerization of ligands for permanent switching of metal complexes. Journal of Materials Chemistry C. 2021;9(14):4757- 4763. https://doi.org/10.1039/D1TC00761K.

10. Sakano T., Imaizumi Y., Hirose T., Matsuda K. Formation of two-dimensionally ordered diarylethene annulated isomer at the Liquid/HOPG interface upon in situ UV Irradiation. Chemistry Letters. 2013; 42(12):1537-1539. https://doi.org/10.1246/cl.130705.

11. Frath D., Sakano T., Imaizumi Y., Yokoyama S., Hirose T., Matsuda K. Diarylethene self-assembled monolayers: cocrystallization and mixing-induced cooperativity highlighted by scanning tunneling microscopy at the liquid/solid interface. Chemistry – A European Journal. 2015;21(32):11350-11358. https:// doi.org/10.1002/chem.201500804.

12. Jeong Y.-C., Kim E.-K., Ahn K.-H., Yang S.-I. Fatigue property of oxidized photochromic dithienylethene derivative for permanent optical recording. Bulletin of the Korean Chemical Society. 2005; 26(11):1675-1676. https://doi.org/10.5012/bkcs.200 5.26.11.1675.

13. Hirose T., Inoue Y., Hasegawa J., Higashiguchi K., Matsuda K. Investigation on CD inversion at visible region caused by a tilt of the π-conjugated substituent: theoretical and experimental approaches by using an asymmetric framework of diarylethene annulated isomer. The Journal of Physical Chemistry A. 2014;118(6):1084-1093. https://doi.org/10.1021/jp4122694.

14. Nakamura S., Irie M. Thermally irreversible photochromic systems. A theoretical study. The Journal of Organic Chemistry. 1988;53(26):6136- 6138. https://doi.org/10.1021/jo00261a035.

15. Lucas L. N., van Esch J., Kellogg R. M., Feringa B. L. A new class of photochromic 1,2-diarylethenes; synthesis and switching properties of bis(3-thienyl)cyclopentenes. Chemical Communications. 1998;21:2313-2314. https://doi.org/10.10 39/A806998K.

16. Lucas L. N., de Jong J. J. D., van Esch J. H., Kellogg R. M., Feringa B. L. Syntheses of dithienylcyclopentene optical molecular switches. European Journal of Organic Chemistry. 2002; 2003(1):155-166. https://doi.org/10.1002/1099-0690 (200301)2003:13.0.CO;2-S.

17. Shirinian V. Z., Shimkin A. A., Lonshakov D. V., Lvov A. G., Krayushkin M. M. Synthesis and spectral properties of a novel family of photochromic diarylethenes-2,3-diarylcyclopent-2-en-1-ones. Journal of Photochemistry and Photobiology A: Chemistry. 2012;233:1-14. https://doi.org/10.1016/j.jphotochem. 2012.02.011.

18. Miyasaka H., Nobuto T., Itaya A., Tamai N., Irie M. Picosecond laser photolysis studies on a photochromic dithienylethene in solution and in crystalline phases. Chemical Physics Letters. 1997; 269(3-4):281-285. https://doi.org/10.1016/S0009-26 14(97)00282-0.

19. Yamada T., Kobatake S., Irie M. Single-crystalline photochromism of diarylethene mixtures. Bulletin of the Chemical Society of Japan. 2002;75(1): 167-173. https://doi.org/10.1246/bcsj.75.167.

20. Fukumoto S., Nakashima T., Kawai T. Synthesis and photochromic properties of a dithiazolylindole. Dyes and Pigments. 2012;92(2):868-871. https://doi.org/10.1016/j.dyepig.2011.05.027.

21. Fukumoto S., Nakashima T., Kawai T. Photonquantitative reaction of a dithiazolylarylene in solution. Angewandte Chemie. 2011;50(7):1565-1568.

22. Becke A. D. Density‐functional thermoschemistry. III. The role of exact exchange. The Journal of Chemical Physics. 1993;98:5648-5652. https://doi.org/10.1063/1.464913.

23. Ditschfield R., Hehre W. J., Pople J. A. Self‐consistent molecular‐orbital methods. IX. An extended gaussian‐type basis for molecular‐orbital studies of organic molecules. The Journal of Chemical Physics. 1971;54(2):724-728. https://doi. org/10.1063/1.1674902.

24. Irie M., Miyatake O., Uchida K., Eriguchi T. Photochromic diarylethenes with intralocking arms. Journal of the American Chemical Society. 1994;116 (22):9894-9900. https://doi.org/10.1021/ja00101a010.

25. Li W., Li X., Xie Y., Wu Y., Li M., Wu X.-Y., et al. Enantiospecific photoresponse of sterically hindered diarylethenes for chiroptical switches and photomemories. Scientific Reports. 2015;5. Article number 9186. https://doi.org/10.1038/srep09186.

26. Hoffmann R., Woodward R. B. Conservation of orbital symmetry. Accounts of Chemical Research. 1968;1:17-22. https://doi.org/10.1021/ar 50001a003.


Review

For citations:


Kouame E.K., Lvov A.G. Energy profile of formal 1,2-dyotropic rearrangement of diarylethenes. Proceedings of Universities. Applied Chemistry and Biotechnology. 2022;12(1):153-159. https://doi.org/10.21285/2227-2925-2022-12-1-153-159

Views: 470


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)