Energy profile of formal 1,2-dyotropic rearrangement of diarylethenes
https://doi.org/10.21285/2227-2925-2022-12-1-153-159
Abstract
Diarylethenes with thiophene substituents belong to photoswitchable compounds (photoswitches or photochromes). Upon UV irradiation, their colorless open-ring isomers (DAE-o) convert to the colored closed-ring isomers (DAE-c), while the back reaction is induced only by visible light irradiation. A multiple photoswitching of diarylethenes usually results in irreversible photorearrangement of DAE-c to the so-called annulated isomers DAE-a, that are stable thermally and photochemically. In the present communication, structures of a series of diarylethenes as well as their isomers were optimized on the B3LYP/6-31G(d) level of theory. It was disclosed for the first time, that DAE-a destabilized relatively DAE-c by 1.71–14.00 kcal/mol. These results are important for design of photocontrollable molecules and materials, operated in the oneway (permanent manner).
About the Authors
E. K. KouameRussian Federation
Eric Koffi Kouame, Postgraduate Student
1, Favorsky St., Irkutsk, 664033; 83, Lermontov St., Irkutsk, 664074
A. G. Lvov
Russian Federation
Andrey G. Lvov, Cand. Sci. (Chemistry), Leading Researcher
1, Favorsky St., Irkutsk, 664033; 83, Lermontov St., Irkutsk, 664074
References
1. Bouas-Laurent H., Durr H. Organic photochromism. Pure and Applied Chemistry. 2001;73(4): 639-665. http://dx.doi.org/10.1351/pac200173040639.
2. Irie M., Mohri M. Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. The Journal of Organic Chemistry. 1988;53(4):803-808. https://doi.org/10.1021/jo 00239a022.
3. Hanazawa M., Sumiya R., Horikawa Y., Irie M. Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis (2-methylbenzo[b]thiophen-3-yl)perfluorocyclocoalkene derivatives. Journal of the Chemical Society, Chemical Communications. 1992;(3):206-207. https://doi.org/ 10.1039/C39920000206.
4. Irie M., Fukaminato T., Matsuda K., Kobatake S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chemical Reviews. 2014;114(24):12174-12277. https://doi. org/10.1021/cr500249p.
5. Irie M., Lifka T., Uchida K., Kobatake S., Shindo Y. Fatigue resistant properties of photochromic dithienylethenes: by-product formation. Chemical Communications. 1999;8:747-750. https:// doi.org/10.1039/A809410A.
6. Herder M., Schmidt B. M., Grubert L., Pätzel M., Schwarz J., Hecht S. Improving the fatigue resistance of diarylethene switches. Journal of the American Chemical Society. 2015;137(7):2738- 2747. https://doi.org/10.1021/ja513027s.
7. Herder M., Eisenreich F., Bonasera A., Grafl A., Grubert L., Patzel M., et al. Light-controlled reversible modulation of frontier molecular orbital energy levels in trifluoromethylated diarylethenes. Chemistry – A European Journal. 2017;23(15):3743-3754. https://doi.org/10.1002/chem.201605511.
8. Higashiguchi K., Matsuda K., Kobatake S., Yamada T., Kawai T., Irie M. Fatigue mechanism of photochromic 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene. Bulletin of the Chemical Society of Japan. 2000;73(10):2389-2394. https://doi.org/ 10.1246/bcsj.73.2389.
9. Lvov A. G., Mörtel M., Heinemann F. W., Khusniyarov M. M. One-way photoisomerization of ligands for permanent switching of metal complexes. Journal of Materials Chemistry C. 2021;9(14):4757- 4763. https://doi.org/10.1039/D1TC00761K.
10. Sakano T., Imaizumi Y., Hirose T., Matsuda K. Formation of two-dimensionally ordered diarylethene annulated isomer at the Liquid/HOPG interface upon in situ UV Irradiation. Chemistry Letters. 2013; 42(12):1537-1539. https://doi.org/10.1246/cl.130705.
11. Frath D., Sakano T., Imaizumi Y., Yokoyama S., Hirose T., Matsuda K. Diarylethene self-assembled monolayers: cocrystallization and mixing-induced cooperativity highlighted by scanning tunneling microscopy at the liquid/solid interface. Chemistry – A European Journal. 2015;21(32):11350-11358. https:// doi.org/10.1002/chem.201500804.
12. Jeong Y.-C., Kim E.-K., Ahn K.-H., Yang S.-I. Fatigue property of oxidized photochromic dithienylethene derivative for permanent optical recording. Bulletin of the Korean Chemical Society. 2005; 26(11):1675-1676. https://doi.org/10.5012/bkcs.200 5.26.11.1675.
13. Hirose T., Inoue Y., Hasegawa J., Higashiguchi K., Matsuda K. Investigation on CD inversion at visible region caused by a tilt of the π-conjugated substituent: theoretical and experimental approaches by using an asymmetric framework of diarylethene annulated isomer. The Journal of Physical Chemistry A. 2014;118(6):1084-1093. https://doi.org/10.1021/jp4122694.
14. Nakamura S., Irie M. Thermally irreversible photochromic systems. A theoretical study. The Journal of Organic Chemistry. 1988;53(26):6136- 6138. https://doi.org/10.1021/jo00261a035.
15. Lucas L. N., van Esch J., Kellogg R. M., Feringa B. L. A new class of photochromic 1,2-diarylethenes; synthesis and switching properties of bis(3-thienyl)cyclopentenes. Chemical Communications. 1998;21:2313-2314. https://doi.org/10.10 39/A806998K.
16. Lucas L. N., de Jong J. J. D., van Esch J. H., Kellogg R. M., Feringa B. L. Syntheses of dithienylcyclopentene optical molecular switches. European Journal of Organic Chemistry. 2002; 2003(1):155-166. https://doi.org/10.1002/1099-0690 (200301)2003:13.0.CO;2-S.
17. Shirinian V. Z., Shimkin A. A., Lonshakov D. V., Lvov A. G., Krayushkin M. M. Synthesis and spectral properties of a novel family of photochromic diarylethenes-2,3-diarylcyclopent-2-en-1-ones. Journal of Photochemistry and Photobiology A: Chemistry. 2012;233:1-14. https://doi.org/10.1016/j.jphotochem. 2012.02.011.
18. Miyasaka H., Nobuto T., Itaya A., Tamai N., Irie M. Picosecond laser photolysis studies on a photochromic dithienylethene in solution and in crystalline phases. Chemical Physics Letters. 1997; 269(3-4):281-285. https://doi.org/10.1016/S0009-26 14(97)00282-0.
19. Yamada T., Kobatake S., Irie M. Single-crystalline photochromism of diarylethene mixtures. Bulletin of the Chemical Society of Japan. 2002;75(1): 167-173. https://doi.org/10.1246/bcsj.75.167.
20. Fukumoto S., Nakashima T., Kawai T. Synthesis and photochromic properties of a dithiazolylindole. Dyes and Pigments. 2012;92(2):868-871. https://doi.org/10.1016/j.dyepig.2011.05.027.
21. Fukumoto S., Nakashima T., Kawai T. Photonquantitative reaction of a dithiazolylarylene in solution. Angewandte Chemie. 2011;50(7):1565-1568.
22. Becke A. D. Density‐functional thermoschemistry. III. The role of exact exchange. The Journal of Chemical Physics. 1993;98:5648-5652. https://doi.org/10.1063/1.464913.
23. Ditschfield R., Hehre W. J., Pople J. A. Self‐consistent molecular‐orbital methods. IX. An extended gaussian‐type basis for molecular‐orbital studies of organic molecules. The Journal of Chemical Physics. 1971;54(2):724-728. https://doi. org/10.1063/1.1674902.
24. Irie M., Miyatake O., Uchida K., Eriguchi T. Photochromic diarylethenes with intralocking arms. Journal of the American Chemical Society. 1994;116 (22):9894-9900. https://doi.org/10.1021/ja00101a010.
25. Li W., Li X., Xie Y., Wu Y., Li M., Wu X.-Y., et al. Enantiospecific photoresponse of sterically hindered diarylethenes for chiroptical switches and photomemories. Scientific Reports. 2015;5. Article number 9186. https://doi.org/10.1038/srep09186.
26. Hoffmann R., Woodward R. B. Conservation of orbital symmetry. Accounts of Chemical Research. 1968;1:17-22. https://doi.org/10.1021/ar 50001a003.
Review
For citations:
Kouame E.K., Lvov A.G. Energy profile of formal 1,2-dyotropic rearrangement of diarylethenes. Proceedings of Universities. Applied Chemistry and Biotechnology. 2022;12(1):153-159. https://doi.org/10.21285/2227-2925-2022-12-1-153-159