Preparation of polyhydroxyalkanoates using Pseudomonas helmanticensis in non-sterile media containing glycerol and sodium dodecyl sulfate
https://doi.org/10.21285/2227-2925-2022-12-3-479-484
Abstract
Biosynthetically-produced Pseudomonas poly-3-hydroxyalkanoates (PHAs) are a promising substitute for conventional plastics. Costs involved with the production of PHAs can be reduced by optimizing power consumption, which can be achieved using nutrient media without preliminary steam sterilization. Cultivation of Pseudomonas bacteria resistant to sodium dodecyl sulfate (SDS) on SDS-containing non-sterile media yields a biomass consisting predominantly of a PHA producer. SDS plays the role of an antimicrobial agent that inhibits the growth of foreign microorganisms. In this work, an SDS-resistant culture of Pseudomonas helmanticensis and media containing glycerol and SDS were used. The concentrations of carbon (glycerol) and nitrogen sources were optimized using an experiment performed according to a central composite rotatable design. The concentration of substrate C and the C/N ratio between the glycerol and nitrogen content were varied. The dependence of the degree of substrate conversion in PHA on C and C/N was derived in the R programming environment. The constructed model adequately describes the experimental data at a significance level of 0.05 (adequacy variance of the regression equation 4.1×10-2; R2 =0.98). According to the constructed model, the conversion of glycerol to PHA equals 6.9±0.4%. Under optimized conditions (0.61 g/L nitrogen source; 8.4 g/L glycerol; 96 h), P. helmanticensis converts 7.0% of the substrate to PHA with an average monomer unit length. Using a 16S rRNA metagenomic assay, the proportion of foreign bacteria in P. helmanticensis cultures on non-sterile media containing 0.5 g/L SDS was shown to be 2%.
Keywords
About the Authors
I. N. ZubkovRussian Federation
Ilya N. Zubkov, Junior Researcher
55, Liteinyi Ave., St. Petersburg, 191014
Yu. S. Bukin
Russian Federation
Yurii S. Bukin, Cand. Sci. (Biology), Senior Researcher
3, Ulan-Batorskaya St., Irkutsk, 664033
P. N. Sorokoumov
Russian Federation
Pavel N. Sorokoumov, Researcher
55, Liteinyi Ave., St. Petersburg, 191014
S. M. Shishlyannikov
Russian Federation
Sergey M. Shishlyannikov, Cand. Sci. (Biology), Senior Researcher
55, Liteinyi Ave., St. Petersburg, 191014
References
1. Junyu Z., Shishatskaya E. I., Volova T. G., da Silva L. F., Chen G.-Q. Polyhydroxyalkanoates (PHA) for therapeutic applications. Materials Science and Engineering: C. 2017;86:144-150. https://doi.org/10.1016/j.msec.2017.12.035.
2. Ruiz C., Kenny S. T., Narancic T., Babu R., O’ Connor K. Conversion of waste cooking oil into medium chain polyhydroxyalkanoates in a high cell density fermentation. Journal of Biotechnology. 2019;306:9-15. https://doi.org/10.1016/j.jbiotec.2019.08.020.
3. Kumar M., You S., Beiyuan J., Tsang D. C. W., Luo G., Gupta J., et al. Lignin valorization by bacterial genus Pseudomonas: state-of-the-art review and prospects. Bioresource Technology. 2021;320:124412. https://doi.org/10.1016/j.biortech.2020.124412.
4. Mannina G., Presti D., Montiel-Jarillo G., Carrera J., Suarez-Ojeda M. E. Recovery of polyhydroxyalkanoates (PHAs) from wastewater: a review. Bioresource Technology. 2020;297:122478. https://doi.org/10.1016/j.biortech.2019.03.037.
5. Marang L., van Loosdrecht M. C. M., Kleerebezem R. Combining the enrichment and accumulation step in non-axenic PHA production: cultivation of Plasticicumulans acidivorans at high volume exchange ratios. Journal of Biotechnology. 2016;231:260-267. https://doi.org/10.1016/j.jbiotec.2016.06.016.
6. Tan D., Xue Y.-S., Aibaidula G., Chen G.-Q. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresource Technology. 2011;102(17):8130-8136. https://doi.org/10.1016/j.biortech.2011.05.068.
7. Johnston M. D., Simons E.-A., Lambert R. J. W. One explanation for the variability of the bacterial suspension test. Journal of Applied Microbiology. 2000;88(2):237-242. https://doi.org/10.1046/j.1365-2672.2000.00951.x.
8. Nepomnyashchiy A. P., Shishlyannikov S. M., Shpironok O. G., Alekseeva A. A., Zubkov I. N., Sitnov V. Yu. Soil SDS-degrading bacterium Pseudomonas helmanticensis as a potential producer of polyhydroxyalkanoates. In: Current trends of agricultural industry in global economy: XIX International Scientific and Practical Conference. Kemerovo, 2021. p. 182-189. https://doi.org/10.32743/agri.gl.econ.2020.182-189.
9. Poblete-Castro I., Wittmann C., Nike P. I. Biochemistry, genetics and biotechnology of glycerol utilization in Pseudomonas species. Microbial Biotechnology. 2020;13(1):32-53. https://doi.org/10.1111/1751-7915.13400.
10. Sabapathy P. C., Devaraj S., Meixner K., Anburajan P., Kathirvel P., Ravikumar Y., et al. Recent developments in polyhydroxyalkanoates (PHAs) production in the past decade – a review. Bioresource Technology. 2020;306:123132. https://doi.org/10.1016/j.biortech.2020.123132.
11. Saranya V., Shenbagarathai R. Effect of nitrogen and calcium sources on growth and production of PHA of Pseudomonas sp. LDC-5 and its mutant. Current Research Journal of Biological Sciences. 2010;2(3):164-167.
12. Ojhaa N., Das N. A statistical approach to optimize the production of polyhydroxyalkanoates from Wickerhamomyces anomalus VIT-NN01 using response surface methodology. International Journal of Biological Macromolecules. 2018;107:2157-2170. https://doi.org/10.1016/j.ijbiomac.2017.10.089.
13. Zain N. F. M., Paramasivam M., Tan J. S., Lim V., Lee C. K. Response surface methodology optimization of polyhydroxyalkanoate (PHA) production by Burkholderia cepacia BPT1213 using waste glycerol from palm oil based biodiesel production. Biotechnology Progress. 2021;37(1):e3077. https://doi.org/10.1002/btpr.3077.
14. Pokoj T., Klimiuk E., Ciesielski S. Interactive effect of crude glycerin concentration and C:N ratio on polyhydroxyalkanoates accumulation by mixed microbial cultures modelled with response surface methodology. Water Research. 2019;156:434-444. https://doi.org/10.1016/j.watres.2019.03.033.
15. Zubkov I. N., Nepomnyshchiy A. P., Kondratyev V. D., Sorokoumov P. N., Sivak K. V., Ramsay E. S., et al. Adaptation of Pseudomonas helmanticensis to fat hydrolysates and SDS: fatty acid response and aggregate formation. Journal of Microbiology. 2021;59(11):1104–1111. https://doi.org/10.1007/s12275-021-1214-5.
16. Rebocho A. T., Pereira J. R., Freitas F., Neves L. A., Alves V. D., Sevrin C., et al. Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas citronellolis grown in apple pulp waste. Applied Food Biotechnology. 2019;6(1):71-82. http://dx.doi.org/10.22037/afb.v6i1.21793.
17. Kondratyev V. D., Goryacheva D. I., Nepomnyaschiy A. P., Zubkov I. N., Shishlyannikov S. M., Sorokoumov P. N. Quantitative analysis of medium-chain polyhydroxyalkanoates in bacterial cells via gas chromatography-mass spectrometry: classical method revision and optimization. International Journal of Polymer Analysis and Characterization. 2022;27(1):32-42. https://doi.org/10.1080/1023666X.2021.1992581.
18. Kozich J. J., Westcott S. L., Baxter N. T., Highlander S. K., Schloss P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology. 2013;79(17):5112-5120. https://doi.org/10.1128/AEM.01043-13.
19. Schlusselhuber M., Godard J., Sebban M., Bernay B., Garon D., Seguin V., et al. Characterization of milkisin, a novel lipopeptide with antimicrobial properties produced by Pseudomonas sp. UCMA 17988 isolated from bovine raw milk. Frontiers in Microbiology. 2018;9:1030. https://doi.org/10.3389/fmicb.2018.01030.
Review
For citations:
Zubkov I.N., Bukin Yu.S., Sorokoumov P.N., Shishlyannikov S.M. Preparation of polyhydroxyalkanoates using Pseudomonas helmanticensis in non-sterile media containing glycerol and sodium dodecyl sulfate. Proceedings of Universities. Applied Chemistry and Biotechnology. 2022;12(3):479-484. (In Russ.) https://doi.org/10.21285/2227-2925-2022-12-3-479-484