Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Characteristics of 2-chloropyridine and thiourea condensation. Structure of the as-formed products and their effect on coating properties during electrochemical nickel plating

https://doi.org/10.21285/2227-2925-2022-12-4-498-505

Abstract

The synthesis and spectral characterisation of 2-pyridylisothiuronium chloride were performed by regulating the rate of feeding 2-chloropyridine into a thiourea solution in ethyl alcohol for ensuring its low concentration in the reaction zone. According to the data of NMR spectroscopy (1H,13С,15N), the obtained compound represents an approximately equimolar mixture of two tautomers: the expected isothiuronium salt and pyridinium chloride with an isothiocarbamide substituting group in the 2nd position. The ability of isothiuronium salt to transit tautomerically to pyridinium salt is determined by the presence of two main centres, including nitrogen atoms of the isothiourea unit and a nitrogen atom of the pyridine ring. A quantum chemical analysis performed using the DFT method showed that the free energy values of the tautomers were similar, with the tautomer protonated on the nitrogen imido-atom being 2.9 (in the gas phase) and 4.7 kcal/mole (taking into account the dimethyl sulphoxide solvent DMSO at the PCM level) more advantageous as compared to the pyridinium salt. A small difference in the tautomer energies determines their formation in an approximately equimolar quantity. A rapid addition (5–10 mL/min) of 2-chloropyridine to the thiourea solution in the reaction zone creates the surplus of the reagent, acting as a base and causing splitting of the isotiuronium salt. This leads to an additional formation of bis(2-pyridyl)sulphide in the reaction medium, representing a valuable ligand for obtaining coordination compounds. The synthesised mixture of tautomers was examined as an additive to the standard nickel-plating electrolyte. In the concentration of 0.3–0.5 g/L, this additive ensured the production of bright low-porous nickel coatings at a sufficiently high current density of 5–10 A/dm2 and a current yield of 98–99 %.

About the Authors

V. A. Grabelnykh
A.E. Favorsky Irkutsk institute of Chemistry, SB RAS
Russian Federation

Valentina A. Grabe - l’nykh, Cand. Sci. (Chemistry), Researcher.

1, Favorsky St., Irkutsk, 664033



I. N. Bogdanova
A.E. Favorsky Irkutsk institute of Chemistry, SB RAS
Russian Federation

Irina N. Bogdanova - Postgraduate Student.

1, Favorsky St., Irkutsk, 664033



N. G. Sosnovskaya
Angarsk State Technical University
Russian Federation

Nina G. Sosnovskaya - Cand. Sci. (Engineering), Associate Professor, Head of the Electrochemical Production Technology Department.

60, Chaikovsky St., 665835, Angarsk



N. V. Istomina
Angarsk State Technical University
Russian Federation

Natalia V. Istomina - Vice-rector for Academic Affairs.

60, Chaikovsky St., 665835, Angarsk



N. V. Russavskaya
A.E. Favorsky Irkutsk institute of Chemistry, SB RAS
Russian Federation

Natal’ya V. Russavskaya - Dr. Sci. (Chemistry), Professor.

1, Favorsky St., Irkutsk, 664033



E. V. Kondrashov
A.E. Favorsky Irkutsk institute of Chemistry, SB RAS
Russian Federation

Evgenii V. Kondrashov- Cand. Sci. (Chemistry), Researcher.

1, Favorsky St., Irkutsk, 664033



R. V. Butrik
Angarsk State Technical University
Russian Federation

Roman V. Butrik - Postgraduate Student.

60, Chaikovsky St., 665835, Angarsk



N. A. Korchevin
A.E. Favorsky Irkutsk institute of Chemistry, SB RAS; Angarsk State Technical University
Russian Federation

Nikolai A. Korchevin - Dr. Sci. (Chemistry), Leading Researcher; Dr. Sci. (Chemistry), Professor, Angarsk STU.

1, Favorsky St., Irkutsk, 664033; 60, Chaikovsky St., 665835, Angarsk



I. B. Rozentsveig
A.E. Favorsky Irkutsk institute of Chemistry, SB RAS; Irkutsk State University
Russian Federation

Igor B. Rozentsveig - Dr. Sci. (Chemistry), Associate Professor, Head of the Laboratory of Organohalogen Compounds, Deputy Director for Research, A. E. Favorsky II of Chemistry SB RAS; Dr. Sci. (Chemistry), Professor, Irkutsk SU.

1, Karl Marx St., 664033, Irkutsk; 1, Favorsky St., Irkutsk, 664033



References

1. Al’fonsov V. A., Belen’kii L. I., Vlasova N. N. Preparation and properties of organic sulfur compounds. Moscow: Khimiya, 1998. 560 p. (In Russian).

2. Luzzio F. A. Decomposition of S-alkylisothiouronium salts under anhydrous conditions-application to a facile preparation of nonsymmetrical dialkyl sulfides. Synthetic Communications. 1984;14(3):209-214. https://doi.org/10.1080/00397918408060723.

3. Levanova E. P., Vakhrina V. S., Grabelnykh V. A., Rozentsveig I. B., Russavskaya N. V., Albanov A. I., et al. Features of the synthesis of unsaturated sulfides proceeding from (2-chloroprop-2-en-1-yl)isothiouronium chloride. Zhurnal organicheskoi khimii = Russian Journal of Organic Chemistry. 2015;51(2):175-180. (In Russian).

4. Koval’ I. V. Sulfides: synthesis and properties. Uspekhi khimii. 1994;63(4):338-360. (In Russian).

5. Levanova E. P., Grabel’nykh V. A., Vakhrina V. S., Russavskaya N. V., Albanov A. I., Korchevin N. A., et al. Synthesis of new 2-(alkenylsulfanyl)pyrimidine derivatives. Zhurnal organicheskoi khimii = Russian Journal of Organic Chemistry. 2014;50(3):440-444. (In Russian). https://doi.org/10.1134/S1070428014030221.

6. Kubo Y., Ishihara S., Tsukahara M., Tokito S. Isothiouronim-derived simple fluorescent chemosensors of anions. Journal of the Chemical Society, Perkin Transactions 2. 2002;(8):1455-1460. https://doi.org/10.1039/B202953G.

7. Allan R. D., Dickenson H. W., Hierin B. P., Johnston G. A., Kozlauskas R. Isothiouronium compounds as γ-aminobuteric acid agonists. British Journal of Pharmacology. 1986;88(2):379-387. https://doi.org/10.1111/j.1476-5381.1986.tb10214.x.

8. Hoving S., Bar-Shimon M., Tijmes J. J., Goldshleger R., Tal D. M., Karlish S. J. D. Novel aromatic isothiouronium derivatives which act as high affinity competitive antagonists of alkali metal cations on Na/K-ATPase. Journal of Biological Chemistry. 1995;270(50):29788-29793. https://doi.org/10.1074/jbc.270.50.29788.

9. Ferreiraa M., Assunçãob L. S., Silva A. H., Filippin-Monteirod F. B., Creczynski-Pasa T. B., Sáa M. M. Allylic isothiouronium salts: the discovery of a novel class of thiourea analogues with antitumor activity. European Journal of Medicinal Chemistry. 2017;129:151-158. https://doi.org/10.1016/j.ejmech.2017.02.013.

10. Quraishi M. A., Ansari F. A., Jamal D. Thiourea derivatives as corrosion inhibitors for mild steel in formic acid. Materials Chemistry and Physics. 2003;77(3):687690. https://doi.org/10.1016/S0254-0584(02)00130-X.

11. Ushakov I. A., Nikonova V. S., Polynskii I. V., Knyazeva L. G., Polynskaya M. M., Antsiferov E. A. Study on efficiency of corrosion inhibitors based on derivatives of isothiuronic salts. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2021;11(2):326-332. (In Russian). https://doi.org/10.21285/2227-2925-2021-11-2-326-332.

12. Ivanova A. O., Sosnovskaya N. G., Nikonova V. S., Levanova E. P., Popov S. I. The use of isothi-uronic salts as brightening additives in the technology of bright nickel electrochemical plating. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2017;7(4)136-141. (In Russian). https://doi.org/10.21285/227-2925-2017-7-4-136-141.

13. Sosnovskaya N. G., Istomina N. V., Sinegovskaya L. M., Rosenzweig I. B., Korchevin N. A. Electrodeposition of bright nickel coatings from sulfate electrolyte in the presence of isothiyronium salts. Gal’vanotekhnika i obrabotka poverhnosti = Electroplating & Surface Treatment. 2019;27(4):4-11. (In Russian). https://doi.org/10.47188/0869-5326_2019_27_4_4.

14. Lukevits É. Pyridine derivatives in the drug arsenal (150 years of pyridine chemistry). Chemistry of Heterocyclic Compounds. 1995;31:639-650. https://doi.org/10.1007/BF01169065.

15. Abbas H.-A. S., El Sayed W. A., Fathy N. M. Synthesis and antitumor activity of new dihydropyridine thioglycosides and their corresponding dehydrogenated forms. European Journal of Medicinal Chemistry. 2010;45(3):973-982. https://doi.org/10.1016/j.ejmech.2009.11.039.

16. Szeptycka B. Effects of organic compounds on the electrocrystallization of nickel. Elektrohimiya. 2001;37(7):805-810. (In Russian).

17. Sezer E., Ustamehmetoglu B., Katirci R. Effects of a N, N-dimethyl-N-2-propenyl-2-propene-1-ammonium chloride-2-propenamide copolymer on bright nickel plating. Surface and Coatings Technology. 2012;213:253-263. https://doi.org/10.1016/j.surfcoat.2012.10.057.

18. Chachaty C., Pappalardo G. C., Scarlata G. Molecular conformation of di-2-pyridyl sulphide. A dipole moment, 1H nuclear magnetic resonance, and CNDO/2 study. Journal of the Chemical Society, Perkin Transactions 2. 1976;11:2434. https://pubs.rsc.org/en/content/articlepdf/1976/p2/p29760001234.

19. Cossar B. C., Fournier J. O., Fields D. L., Reynolds D. D. Preparation of thiols. Journal of Organic Chemistry. 1962;27(1):93-95. https://doi.org/10.1021/jo01048a024.

20. Brown C. M., Kitt M. J., Xu Z., Hean D., Ezhova M. B., Wolf M. O. Tunable emission of Iridium(III) complexes bearing sulfur-bridged dipyridyl ligands. Inorganic Chemistry. 2017;56(24):1511015118. https://pubs.acs.org/doi/10.1021/acs.inorgchem.7b02439.


Review

For citations:


Grabelnykh V.A., Bogdanova I.N., Sosnovskaya N.G., Istomina N.V., Russavskaya N.V., Kondrashov E.V., Butrik R.V., Korchevin N.A., Rozentsveig I.B. Characteristics of 2-chloropyridine and thiourea condensation. Structure of the as-formed products and their effect on coating properties during electrochemical nickel plating. Proceedings of Universities. Applied Chemistry and Biotechnology. 2022;12(4):498-505. (In Russ.) https://doi.org/10.21285/2227-2925-2022-12-4-498-505

Views: 342


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)