Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

Влияние штаммов Bacillus thuringiensis на ростовые и метаболические процессы в проростках Pisum sativum L.

https://doi.org/10.21285/2227-2925-2022-12-4-557-565

Аннотация

Энтомопатогенные бактерии Bacillus thuringiensis Berliner являются широко известным биоагентом препаратов для регуляции численности листогрызущих насекомых-вредителей сельскохозяйственных и декоративных культур. Помимо энтомопатогенных свойств, перспективно изучение и других агрономически полезных свойств данного микроорганизма. Целью наших исследований было рассмотрение ростстимулирующего эффекта энтомопатогенных штаммов B. thuringiensis на растения гороха сорта Девиз. Материалом для исследований послужили энтомопатогенные штаммы B. thuringiensis 685, 926 и 109-С, полученные из Крымской коллекции микроорганизмов Научноисследовательского института сельского хозяйства Крыма, зарегистрированной на сайте (http://www.ckp-rf.ru) под номером 507484. Морфометрические параметры проростков гороха оценивали согласно стандартным методикам. Биохимические показатели проростков гороха определяли в 10-суточных проростках. Активность амилазы проростков гороха определяли фотокалориметрически, общую кислотность – титрованием с 0,1 н раствора NaOH, суммарное содержание водорастворимых фенольных соединений – титриметрическим методом Левенталя. Установлено, что жидкая споровая культура штаммов B. thuringiensis 685, 926 и 109-С оказывала стимулирующее воздействие на длину корня и стебля проростка, на вес 10-суточных проростков гороха сорта Девиз. Обработка споровой суспензией всех исследованных штаммов B. thuringiensis способствовала увеличению содержания органических кислот в проростках в среднем на 12,4% в сравнении с контролем. Максимальное стимулирующее действие на амилолитическую активность и синтез фенольных соединений в проростках гороха сорта Девиз оказывала обработка споровой суспензией штамма B. thuringiensis 926. Активность амилаз увеличивалась в среднем на 41,5% к контролю, а суммарное содержание фенольных соединений в данном варианте было в 2,3 раза выше, чем в контроле. Таким образом, принимая во внимание энтомопатогенные свойства и полученные данные о ростстимулирующей активности штаммов B. thuringiensis можно заключить, что данные бактерии имеют дополнительный потенциал для их использования в сельском хозяйстве в качестве агента биопрепарата для защиты растений комплексного действия.

Об авторах

А. В. Крыжко
Научно-исследовательский институт сельского хозяйства Крыма
Россия

Анастасия Владимировна Крыжко - кандидат сельскохозяйственных наук, ведущий научный сотрудник лаборатории молекулярной генетики, протеомики и биоинформатики в сельском хозяйстве.

295453, Симферополь, ул. Киевская, 150



Н. Н. Смаглий
Научно-исследовательский институт сельского хозяйства Крыма
Россия

Наталья Николаевна Смаглий - лаборант лаборатории молекулярной и клеточной биологии.

295453, Симферополь, ул. Киевская, 150



Список литературы

1. Espinasse S., Chaufaux J., Buisson C., Perchat S., Gohar M., Bourguet D., et al. Occurrence and linkage between secreted insecticidal toxins in natural isolates of Bacillus thuringiensis // Current Microbiology. 2003. Vol. 47. P. 501–507. https://doi.org/10.1007/s00284-0034097-2.

2. Кандыбин Н. В. Бактериальные средства борьбы с грызунами и вредными насекомыми: теория и практика. М.: Агропромиздат, 1989. 172 с.

3. Мельникова Е. А. О патогенности В. thuringiensis и препаратов на их основе для теплокровных организмов // Энтомопатогенные бактерии и их роль в защите растений. Новосибирск, 1987. С. 118–130.

4. Коростель С. И., Капустина О. В. Влияние термостабильного экзотоксина Bacillus thuringiensis на трихограмму (Trichogramma sp.) и агениасписа (Ageniaspis tuscicollus Dalm.) // Труды ВНИИ защиты растений. 1975. 44 с.

5. Deshayes C., Siegwart M., Pauron D., Froger J.-A., Lapied B., Apaire-Marchais V. Microbial pest control agents: are they a specific and safe tool for insect pest management // Current Medicinal Chemistry. 2017. Vol. 24. P. 2959–2973. https://doi.org/10.2174/0929867324666170314144311.

6. Baranek J., Pogodziński B., Szipluk N., Zielezinski A. TOXiTAXi: a web resource for toxicity of Bacillus thuringiensis protein compositions towards species of various taxonomic groups // Scientific Reports. 2020. Vol. 10. P. 19767. https://doi.org/10.1038/s41598-02075932-7.

7. Rubio-Infante N., Moreno-Fierros L. An overview of the safety and biological effects of Bacillus thuringiensis cry toxins in mammals // Journal of Applied Toxicology. 2016. Vol. 36. P. 630–648. https://doi.org/10.1002/jat.3252.

8. Nazari M., Smith D. L. A PGPR-produced bacteriocin for sustainable agriculture: a review of thuricin 17 characteristics and applications // Frontiers in Plant Science. 2020. Vol. 11. https://doi.org/10.3389/Fpls.2020.00916.

9. Гришечкина С. Д., Ермолова В. П., Коваленко Т. К., Антонец К. С., Белоусова М. Е., Яхно В. В. [и др.]. Полифункциональные свойства производственного штамма Bacillus thuringiensis var. thuringiensis 800/15 // Сельскохозяйственная биология. 2019. Т. 54. N 3. С. 494–504. https://doi.org/10.15389/agrobiology.2019.3.494rus.

10. Berg G., Muller H., Zachow C., Opelt K., Scherwinski K., Tilcher R., et al. Endophytes: structural and functional diversity and biotechnological applications in control of plant pathogens // Ecological Genetics. 2008. Vol. 6, no. 2. P. 17–26. https://doi.org/10.17816/ecogen6217-26.

11. Vyas P., Kaur R. Culturable stress-tolerant plant growth-promoting bacterial endophytes associated with Adhatoda vasica // Journal of Soil Science and Plant Nutrition. 2019. Vol. 19. P. 290–298. https://doi.org/10.1007/s42729-019-00028-9.

12. Jo H., Tagele S. B., Pham H. Q., Kim M. C.,

13. Choi S. D., Kim M. J., et al. Response of soil bacterial community and pepper plant growth to application of Bacillus thuringiensis KNU-07 // Agronomy-Basel. 2020. Vol. 10, no. 4. P. 551. https://doi.org/10.3390/Agronomy10040551.

14. Raheem A., Shaposhnikov A., Belimov A. A., Dodd I. C., Ali B. Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress // Archives of Agronomy and Soil Science. 2018. Vol. 64. P. 574–587. https://doi.org/10.1080/03650340.2017.1362105.

15. Ambreen S., Yasmin A., Aziz S. Isolation and characterization of organophosphorus phosphatases from Bacillus thuringiensis MB497 capable of degrading chlorpyrifos, triazophos and dimethoate // Heliyon. 2020. Vol. 6, no. 7. https://doi.org/10.1016/j.heliyon.2020.e04221.

16. Garner B., Brown E., Taplin M., Garcia A., Williams-Mapp B. Transferrin Impacts Bacillus thuringiensis biofilm levels // Biomed Research International. 2016. https://doi.org/10.1155/2016/3628268.

17. De Mandal S., Singh S. S., Kumar N. S. Analyzing plant growth promoting Bacillus sp. and related genera in Mizoram, Indo-Burma biodiversity hotspot // Biocatalysis and Agricultural Biotechnology. 2018. Vol. 15. P. 370–376. https://doi.org/10.1016/j.bcab.2018.07.026.

18. Raddadi N., Cherif A., Boudabous A., Daffonchio D. Screening of plant growth promoting traits of Bacillus thuringiensis // Annals of Microbiology. 2008. Vol. 58. P. 47–52. https://doi.org/10.1007/Bf03179444.

19. Симонова А. А., Терехин Д. А., Терехина Л. Д., Каменек Л. К. Стимулирующее действие дельта-эндотоксина Bacillus thuringiensis kurstaki штамм Z-52 на ювенильные растения // Постгеномная эра в биологии и проблемы: материалы II Международной научно-практической конференции. Казань, 2008. C. 119–120.

20. Терехин Д. А., Терехина Л. Д., Симонова А. А., Каменек Л. К. Характер действия дельтаэндотоксина Bacillus thuringiensis kurstaki штамм Z-52 на огурец в условиях низких температур in vitro // Постгеномная эра в биологии и проблемы: материалы II Международной научно-практической конференции. Казань, 2008. C.131–132.

21. Cheynier V., Comte G., Davis K. M., Lattanzio V., Martens S. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology // Plant Physiology and Biochemistry. 2013. Vol. 72. P. 1–20. https://pubmed.ncbi.nlm.nih.gov/23774057/.

22. Lattanzio V., Kroon P. A., Quideau S., Treutter D. Plant phenolics − secondary metabolites with diverse functions // Recent advances in Polyphenol Research. F. Daayf, V. Lattanzio (eds.). Oxford, UK, Wiley-Blackwell, 2008. Vol. 1. P. 1–35.

23. Демиденко Г. А. Влияние свинца на рост и развитие семян и проростков гороха овощного // Вестник КрасГАУ. 2019. N 4. С. 16−23.

24. Chacon I., Riley-Saldana Ch., Gonzalez A. Secondary metabolites during early development in plants // Phytochemistry Reviews. 2013. Vol. 12. P. 47–64. https://doi.org/10.1007/s11101-012-9250-8.

25. Казанцева В. В., Гончарук Е. А., Фесенко А. Н., Широкова А. В., Загоскина Н. В. Особенности образования фенольных соединений в проростках гречихи (Fagopyrum esculentum Moench) различных сортов // Сельскохозяйственная биология. 2015. Т. 50. N 5. С. 611–619. https://doi.org/10.15389/agrobiology.2015.5.611rus.

26. Pompeiano A., Fanucchi F., Guglielminetti L. Amylolytic activity and carbohydrate levels in relation to coleoptile anoxic elongation in Oryza sativa genotypes // Journal of Plant Research. 2013. Vol. 126, no. 6. P. 787–794. https://doi.org/10.1007/s10265-013-0567-1.

27. Liu X., Zhang S., Shan X. Q., Christie P. Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination // Ecotoxicology and Environmental Safety. 2007. Vol. 68, no. 2. P. 305–313. https://doi.org/10.1016/j.ecoenv.2006.11.001.

28. Хайлафян А. А. Современные статистические методы медицинских исследований. М.: ЛЕНАРД, 2014. 320 с. 28. Deore G. B., Limaye A. S., Dushing Y. A., Dhobale S. B., Kale S., Laware S. L. Screening of protease producing fungi for microbial digestion of seed proteins and synthesis of amino acids-metalnutrient chelates // Pakistan Journal of Biological Sciences. 2013. Vol. 16. P. 86–91. https://doi.org/10.3923/pjbs.2013.86.91.

29. Carré B., Gomez J., Chagneau A. M. Contribution of oligosaccharide and polysaccharide digestion, and excreta losses of lactic acid and short chain fatty acids, to dietary metabolisable energy values in broiler chickens and adult cockerels // British Poultry Science. 1995. Vol. 36. P. 611–629. https://doi.org/10.1080/00071669508417807.

30. Khemakhem M., Zarroug Y., Jabou K., Selmi S., Bouzouita N. Physicochemical characterization of oil, antioxidant potential, and phenolic profile of seeds isolated from Tunisian pomegranate (Punica granatum L.) cultivars // Journal of Food Science. 2021. Vol. 86, no. 3. P. 852–859. https://doi.org/10.1111/1750-3841.15636.

31. Schepper C. F., Michiels P., Buvé C., van Loey A. M., Courtin C. M. Starch hydrolysis during mashing: a study of the activity and thermal inactivation kinetics of barley malt α-amylase and β-amylase // Carbohydrate Polymers. 2021. Vol. 255. P. 117494. https://doi.org/10.1016/j.carbpol.2020.117494.

32. Andriotis V. M. E., Rejzek M., Barclay E., Michael D. M., Robert A. F., Alison M. A. Cell wall degradation is required for normal starch mobilisation in barley endosperm // Scientific Reports. 2016. Vol. 6. P. 33215. https://doi.org/10.1038/srep33215.

33. Ahmed Z., Manzoor M. F., Ahmad N., Zeng X.-A., Din Z. U., Roobab U. Impact of pulsed electric field treatments on the growth parameters of wheat seeds and nutritional properties of their wheat plantlets juice // Food Science & Nutrition. 2020. Vol. 8, no. 5. P. 2490– 2500. https://doi.org/10.1002/fsn3.1540.

34. Díaz-Guerra L., Llorens L., Julkunen-Tiitto R., Nogués I., Font J., González J. A., et al. Leaf biochemical adjustments in two Mediterranean resprouter species facing enhanced UV levels and reduced water availability before and after aerial biomass removal // Plant Physiology and Biochemistry. 2019. Vol. 137. P. 130–143. https://doi.org/10.1016/j.plaphy.2019.01.031.

35. Ahmadi T., Shabani L., Sabzalian M. R. LED light mediates phenolic accumulation and enhances antioxidant activity in Melissa officinalis L. under drought stress condition // Protoplasma. 2020. Vol. 257, no. 4. P. 1231–1242. https://doi.org/10.1007/s00709020-01501-4.

36. Beshamgan E. S., Sharifi M., Zarinkamar F. Crosstalk among polyamines, phytohormones, hydrogen peroxide, and phenylethanoid glycosides responses in Scrophularia striata to Cd stress // Plant Physiology and Biochemistry. 2019. Vol. 143. P. 129–141. https://doi.org/10.1016/j.plaphy.2019.08.028.

37. Ayuso-Calles M., García-Estévez I., Jiménez-Gómez A., Flores-Félix J. D., Escribano-Bailón M. T., Rivas R. Rhizobium laguerreae improves productivity and phenolic compound content of lettuce (Lactuca sativa L.) under saline stress conditions // Foods. 2020. Vol. 9, no. 9. P. 1166. https://doi.org/10.3390/foods9091166.


Рецензия

Для цитирования:


Крыжко А.В., Смаглий Н.Н. Влияние штаммов Bacillus thuringiensis на ростовые и метаболические процессы в проростках Pisum sativum L. Известия вузов. Прикладная химия и биотехнология. 2022;12(4):557-565. https://doi.org/10.21285/2227-2925-2022-12-4-557-565

For citation:


Kryzhko A.V., Smagliy N.N. Effect of Bacillus thuringiensis strains on growth and metabolic processes in Pisum sativum L. sprouts. Proceedings of Universities. Applied Chemistry and Biotechnology. 2022;12(4):557-565. (In Russ.) https://doi.org/10.21285/2227-2925-2022-12-4-557-565

Просмотров: 396


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)