Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

Кинетические кривые сорбции нефтепродуктов прокаленным сорбентом из золошлаковых отходов теплоэнергетики

https://doi.org/10.21285/2227-2925-2023-13-1-142-151

Аннотация

Выполнены экспериментальные исследования динамической сорбции модельных смесей, содержащих нефтепродукты. В качестве сорбента исследованы высушенные и прокаленные золошлаковые отходы, накопленные методом гидрозолоудаления на золоотвале Новочеркасской ГРЭС (г. Новочеркасск, Ростовская область, Россия). Навеска прокаленного сорбента для каждого модельного раствора являлась фиксированной и составляла 5,0 г. Модельные растворы пропускали через колонку, заполненную прокаленным сорбентом. На первом этапе проведены экспериментальные исследования по оптимизации расхода фильтрата в диапазоне от 0,05 до 2,5 дм3/мин с шагом 0,05 дм3/мин. Через колонку, содержащую 5 г прокаленного сорбента, пропускали модельные водные растворы c водородным показателем рН=7,5, содержащие по 100 мг/дм3 нефтепродуктов. Оптимальный расход фильтрата составил 0,1 дм3/мин при максимальной эффективности извлечения нефтепродуктов из раствора 84%. На втором этапе построены кинетические зависимости сорбционной емкости и концентрации нефтепродуктов в фильтрате. Для этого проведены экспериментальные исследования по насыщению сорбента нефтепродуктами путем пропускания порций модельного водного раствора, содержащего 10000 мг/дм3 по 0,05 дм3, через колонку, заполненную прокаленным сорбентом в количестве 5 г, с отбором фильтрата 0,1 дм3/мин. Максимальное значение сорбционной емкости составило 560 мг/г при эффективности извлечения нефтепродуктов из раствора 85%. На основе анализа результатов экспериментальных исследований предложен подход к математическому описанию кинетики сорбции нефтепродуктов. Вычисление концентрации нефтепродуктов в фильтрате разбито на два этапа. На первом этапе повышение концентрации нефтепродуктов в фильтрате происходит при насыщении сорбента нефтепродуктами до максимального значения сорбционной емкости, на втором - при максимальном значении сорбционной емкости. Приведены уравнения кинетики для расчета сорбционной емкости и концентрации нефтепродуктов в фильтрате. Получено хорошее качественное согласование экспериментальных и расчетных данных.

Об авторах

Т. Г. Короткова
Кубанский государственный технологический университет
Россия

Короткова Татьяна Германовна – доктор технических наук, доцент, профессор кафедры безопасности жизнедеятельности,

350072, Краснодар, ул. Московская, 2



С. А. Бушумов
Кубанский государственный технологический университет
Россия

Бушумов Святослав Андреевич - младший научный сотрудник.

350072, Краснодар, ул. Московская, 2



Список литературы

1. Черенцова А.А., Олесик С.М. Оценка золошлаковых отходов как источник загрязнения окружающей среды и как источник вторичного сырья // Горный информационно-аналитический бюллетень (научно-технический журнал). 2013. N S3. С. 230-243.

2. Подгорецкий Г.С., Горбунов В.Г., Агапов Е.А., Ерохов Т.В., Козлова О.Н. Проблемы и перспективы утилизации золошлаковых отходов ТЭЦ. Часть 1 // Известия высших учебных заведений. Черная металлургия. 2018. Т. 61. N 6. С. 439-446. https://doi.org/10.17073/0368-0797-2018-6-439-446.

3. Korotkova T.G., Bushumov S.A., Ksandopulo S.Yu., Istoshina N.Yu. Determination of the hazard class of ash-and-slag from a thermal power plant accumulated on ash dumps under the scheme hydraulic ash removal // International Journal of Mechanical Engineering and Technology. 2018. Vol. 9, no. 10. P. 715-723.

4. Черенцова А.А. Эколого-технологическая оценка состава и свойств золошлаковых отходов (на примере Хабаровской ТЭЦ-3) // Вестник Тамбовского университета. Серия: Естественные и технические науки. 2014. Т. 19. N 5. С. 1733-1736.

5. Gorme J.B., Maniquiz M.C., Kim S.S., Son Y.G., Kim Y.-T., Kim L.-H. Characterization of bottom ash as an adsorbent of lead from aqueous solutions // Environmental Engineering Research. 2010. Vol. 15, no. 4. P. 207-213. https://doi.org/10.4491/eer.2010.15.4.207.

6. Pranoto, Martini T., Sunardi B.M.W., Anandita E.P. Optimization of the use of fly ash and natural zeolite activated as composite for an adsorbent of lead heavy metal (Pb) // Materials Science and Engineering. 2019. Vol. 578. P. 012022. https://doi.org/10.1088/1757-899x/578/1/012022.

7. Agarwal A.K., Kadu M.S., Pandhurnekar C.P., Muthreja I.L. Kinetics study on the adsorption of Ni2+ ions onto fly ash // Journal of Chemical Technology and Metallurgy. 2015. Vol. 50, no. 5. P. 601-605.

8. Liu Y., Chen Q., Singh R.P. Low-cost RSAC and adsorption characteristics in the removal of copper ions from wastewater // Applied Sciences. 2022. Vol. 12, no. 11. P. 5612. https://doi.org/10.3390/app12115612.

9. Pizarro J., Castillo X., Jara S., Ortiz C., Navarro P., Cid H., et al. Adsorption of Cu2+ on coal fly ash modified with functionalized mesoporous silica // Fuel. 2015. Vol. 156. P. 96-102. https://doi.org/10.1016/j.fuel.2015.04.030.

10. Kirk D.W., Jia C.Q., Yan J., Torrenueva A.L. Wastewater remediation using coal ash // Journal of Material Cycles and Waste Management. 2003. Vol. 5, no. 1. P. 0005-0008. https://doi.org/10.1007/s101630300001.

11. Arun A., Varunnraj D., Sutharsan T., Bhoopesh T., Rajan M.S. Domestic wastewater treatment using fly ash // International Journal of Research in Engineering, Science and Management. 2021. Vol. 4, no. 5. P. 184-186.

12. Ganapathy C., Nivetha K., Kumar K.O., Pratheep T. Wastewater treatment using fly ash // International Research Journal of Engineering and Technology. 2018. Vol. 5, no. 2. P. 680-683.

13. Nguyen K.D., My Q.N.V., Kim A.P.T., Tran P.T., Kim D.H.T., Kim O.L.T. Coal fly ash-slag and slag-based geopolymer as an absorbent for the removal of methylene blue in wastewater // Science & Technology Development Journal. 2022. Vol. 25, no. 1. P. 2215-2223. https://doi.org/10.32508/stdj.v25i1.3421.

14. Mohan D., Singh K.P., Singh G., Kumar K. Removal of dyes from wastewater using flyash, a low-cost adsorbent // Industrial & Engineering Chemistry Research. 2002. Vol. 41, no. 15. P. 3688-3695. https://doi.org/10.1021/ie010667+.

15. Николаева Л.А., Лаптев А.Г., Исхакова Р.Я. Повышение эффективности биологической очистки сточных вод на предприятиях химической промышленности // Водные ресурсы. 2018. Т. 45. N 2. С. 196-202. https://doi.org/10.7868/S0321059618020098.

16. Singh P., Tripathi P., Chauhan S., Mishra A. Domestic waste water treatment using fly ash alone or in combined form // Journal of Electrical and Electronics Engineering. 2016. Vol. 11, no. 3. P. 34-39. https://doi.org/10.9790/1676-1103033439.

17. Saravanakumar P., Gopalakrishnan P., Sivakamidevi M., Archana E.S. Domestic wastewater treatment using flyash as adsorbent // International Journal of Engineering and Advanced Technology. 2019. Vol. 8, no. 5. P. 1465-1468.

18. Wang J., Guo X. Adsorption kinetic models: physical meanings, applications, and solving methods // Journal of Hazardous Materials. 2020. Vol. 390. P. 122156. https://doi.org/10.1016/j.jhazmat.2020.122156.

19. Смирнов А.Д. Сорбционная очистка воды. Л.: Химия, 1982. 168 с.

20. Bushumov S.A., Korotkova T.G. Determination of physical and chemical properties of the modified sorbent from ash-and-slag waste accumulated on ash dumps by hydraulic ash removal // Rasayan Journal of Chemistry. 2020. Vol. 13, no. 3. P. 1619-1626. https://doi.org/10.31788/RJC.2020.1335454.

21. Korotkova T.G., Bushumov S.A., Ksandopulo S.Yu., Solonnikova N.V. Studying the efficiency of treatment model mixtures of petroleum products with the modified sorbent made of ash-and-slag during dynamic sorption // Journal of Ecological Engineering. 2019. Vol. 20, no. 11. P. 202-209. https://doi.org/10.12911/22998993/113582.


Рецензия

Для цитирования:


Короткова Т.Г., Бушумов С.А. Кинетические кривые сорбции нефтепродуктов прокаленным сорбентом из золошлаковых отходов теплоэнергетики. Известия вузов. Прикладная химия и биотехнология. 2023;13(1):142-151. https://doi.org/10.21285/2227-2925-2023-13-1-142-151

For citation:


Korotkova T.G., Bushumov S.A. Kinetic curves of oil products sorption by calcined sorbent from ash and slag wastes of thermal power engineering. Proceedings of Universities. Applied Chemistry and Biotechnology. 2023;13(1):142-151. (In Russ.) https://doi.org/10.21285/2227-2925-2023-13-1-142-151

Просмотров: 169


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)