Polymerization of methyl methacrylate in the presence of tributylborane and aerosil
https://doi.org/10.21285/2227-2925-2023-13-1-17-27
Abstract
In this work, we study the polymerization of methyl methacrylate in the presence of 0.3-1.2 wt% aerosil and the following initiators: dinitrile azo-bis-isobutyric acid together with tributylborane; dinitrile azo-bis-isobutyric acid together with tributylborane and 2,5-di-tret-butyl benzoquinone-1,4; tributylborane together with di-tret-butyl peroxy-triphenylstibine. Aerosil introduction alters the polymerization kinetics of methyl methacrylate and the respective IR spectra, indicating an increase in the proportion of syndiotactic polymer. This process is related to the orientation of the monomer and polymer on the filler surface due to adsorption by means of the carbonyl oxygen atom and silicon d-orbitals. Each initiating system has a particular effect on the kinetic curves. The polymerization of methyl methacrylate in the presence of tributylborane proceeds through coordination-radical polymerization in the coordination sphere of the boron atom. Additional coordination disrupts monomer coordination and slows down polymerization. The polymerization of methyl methacrylate in the presence of the tributylborane-p-quinone system combines the routes of coordination-radical polymerization and pseudo-living radical polymerization. The initiating system of tributylborane-di-tret-butyl peroxy-triphenylstibine is characterized by implementation of both physical and chemical adsorption mechanisms. The latter promotes the formation of a composite through covalent bonds between the polymer matrix (polymethyl methacrylate) and the filler (aerosil). An increase in the amount of aerosil up to 10 wt% leads to a corresponding change in the IR spectra of the composites. Laboratory samples were prepared to study the mechanical properties of composites and films. When filled with aerosil, polymethyl methacrylate demonstrate worse deformation properties, which is typical of composite materials. The microhardness of the material varies depending on the initiator used and the grafting type (physical or chemical), correlating with the kinetic data.
Keywords
About the Authors
Yu. L. KuznetsovaRussian Federation
Yulia L. Kuznetsova - Cand. Sci. (Chemistry), Associate Professor, National Research Lobachevsky State University of Nizhny Novgorod.
23, Gagarin Ave., Nizhny Novgorod, 603022
E. R. Zhiganshina
Russian Federation
Elnara R. Zhiganshina - Junior Researcher, Laboratory of Photopolymerization and Polymer Materials, G.A. Razuvaev Institute of Organometallic Chemistry RAS.
49, Tropinin St., Nizhny Novgorod, 603137
K. S. Gushchina
Russian Federation
Ksenya S. Gushchina - Junior Researcher, Department of Analytical and Medical Chemistry, Master's Student, National Research Lobachevsky State University of Nizhny Novgorod.
23, Gagarin Ave., Nizhny Novgorod, 603022
S. A. Chesnokov
Russian Federation
Sergey A. Chesnokov - Dr. Sci. (Chemistry), Chief Researcher, Head of the Laboratory of Photopolymerization and Polymer Materials, G.A. Razuvaev Institute of Organometallic Chemistry RAS.
49, Tropinin St., Nizhny Novgorod, 603137
O. V. Kuznetsova
Russian Federation
Olga V. Kuznetsova - Dr. Sci. (Chemistry), Chief Researcher, Head of the Laboratory of Physical-chemical Research, G.A. Razuvaev Institute of Organometallic Chemistry RAS.
49, Tropinin St., Nizhny Novgorod, 603137
References
1. Hsissou R., Seghiri R., Benzekri Z., Hilali M., Rafik M., Elharfi A. Polymer composite materials: a comprehensive review. Composite Structures. 2021;262:113640. https://doi.org/10.1016/j.compstruct.2021.113640.
2. Van de Werken N., Tekinalp H., Khanbolouki P., Ozcan S., Williams A., Tehrani M. Additively manufactured carbon fiber-reinforced composites: state of the art and perspective. Additive Manufacturing. 2020;31:100962. https://doi.org/10.1016/j.addma.2019.100962.
3. Asim M., Saba N., Jawaid M., Nasir M., Pervaiz M., Alothman O.Y. A review on phenolic resin and its composites. Current Analytical Chemistry. 2018;14(3):185-197. https://doi.org/10.2174/1573411013666171003154410.
4. Lebedeva O.V., Sipkina E.I. Polymer composites and their properties. Izvestiya Vuzov. Prikladnaya Kh-imiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2022;12(2):192-207. (In Russian). https://doi.org/10.21285/2227-2925-2022-12-2-192-207.
5. Arabpour A., Shockravi A., Rezania H., Farahati R. Investigation of anticorrosive properties of novel silane-func-tionalized polyamide/GO nanocomposite as steel coatings. Surfaces and Interfaces. 2020;18:100453. https://doi.org/10.1016/j.surfin.2020.100453.
6. Zindani D., Kumar K. An insight into additive manufacturing of fiber reinforced polymer composite. International Journal of Lightweight Materials and Manufacture. 2019;2(4):267-278. https://doi.org/10.1016/j.ijlmm.2019.08.004.
7. Rbaa M., Benhiba F., Hssisou R., Lakhrissi Y., Lakhrissi B., Touhami M.E., et al. Green synthesis of novel carbohydrate polymer chitosan oligosaccharide grafted on dglucose derivative as bio-based corrosion inhibitor. Journal of Molecular Liquids. 2021;322:114549. https://doi.org/10.1016/j.molliq.2020.114549.
8. Hssissou R., Benzidia B., Hajjaji N., Elharfi A. Elaboration, electrochemical investigation and morphological study of the coating behavior of a new polymeric polyepoxide architecture: crosslinked and hybrid deca-glycidyl of phosphorus Penta methylene dianiline on E24 carbon steel in 3.5% NaCl. Portugaliae Electrochimica Acta. 2019;37(3):179-191. https://doi.org/10.4152/pea.201903179.
9. Bazhenov S.L., Berlin A.A., Kul'kov A.A., Oshmyan V.G. Polymer composite materials. Strength and technology. Dolgoprudnyi: Intellekt; 2010. 352 p. (In Russian).
10. Jeelani P.G., Mulay P., Venkat R., Ramalingam C. Multifaceted application of silica nanoparticles. A review. Silicon. 2020;12(6):1337-1354. https://doi.org/10.1007/s12633-019-00229-y.
11. Chukin G.D. Surface chemistry and structure of dispersed silica: monograph. Moscow: Paladin; 2008. 172 p. (In Russian).
12. Fujisawa S., Kadoma Y. Tri-n-butylborane/wa-tercomplex-mediated copolymerization of methyl methacrylate with proteinaceous materials and proteins: a review. Polymers. 2010;2(4):575-595. https://doi.org/10.3390/polym2040575.
13. Tsukada M., Yamamoto T., Nakabayashi N., Ishikawa H., Freddi G. Grafting of methyl methacrylate onto silk fibers initiated by tri-n-butylborane. Journal of Applied Polymer Science. 1991;43(11):2115-2121. https://doi.org/10.1002/app.1991.070431119.
14. Kuznetsova Yu.L., Morozova E.A., Vavilova A.S., Markin A.V., Smirnova O.N., Zakharycheva N.S., et al. Synthesis of biodegradable grafted copolymers of gelatin and polymethyl methacrylate. Polymer Science. Series D. 2020;13(4):453-459. https://doi.org/10.1134/S1995421220040115.
15. Okamura H., Sudo A., Endo T. Generation of radical species on polypropylene by alkylboraneoxygen system and its application to graft polymerization. Journal of Polymer Science. Part A: Polymer Chemistry. 2009;47(22):6163-6167. https://doi.org/10.1002/pola.23659.
16. Dodonov V.A., Dregich A.I. Initiating system tri-n-butylborane-oxygen in pvc polymerization filling with mineral fillers. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo = Vestnik of Lobachevsky University of Nizhni Novgorod. 2012;(3):79-82. (In Russian).
17. Dodonov V.A., Zharov Yu.V., Krasnov Yu.N., Chesnokov L.V. Method of thermoplastic glueing. Patent RF, no. 1621491; 1996. (In Russian).
18. Dodonov V.A., Dregich A.I., Gushchin A.V., Ilyanov S.N. PVC polymerization filling with metal oxides in the presence of radical initiating system trialkylboranetriphenylantimony diperoxides. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo = Vestnik of Lobachevsky University of Nizhni Novgorod. 2012;(4):118-124. (In Russian).
19. Dodonov V.A., Starostina T.I., Kuropatov V.A., Malysheva Y.B., Kuznetsova Y.L., Buzina A.S. Coordination radical polymerization of methyl methacrylate, initiated by the azobis(isobutyronitrile)-tri-n-butylbo-rane binary system. Russian Journal of Applied Chemistry. 2017;90(1):77-83. https://doi.org/10.1134/s1070427217010128.
20. Dodonov V.A., Kuznetsova Yu.L., Vilkova A.I., Skuchilina A.S., Nevodchikov V.I., Beloded L.N. Uncontrolled pseudoliving free-radical polymerization of methyl methacrylate in the presence of butyl-p-benzoqui-nones. Russian Chemical Bulletin. 2007;56(6):1162-1165. https://doi.org/10.1007/s11172-007-0176-z.
21. Weissberger A., Proskauer E.S., Riddick J.A., Toops E.E. Organic solvents. Physicai properties and methods of purification; 1955. (Russ. ed.: Vaisberger A., Proskauer E., Riddik Dzh., Tups E. Organicheskie rast-voriteli. Fizicheskie svoistva i metody ochistki. Moscow: Izd-vo inostrannoi literatury; 1958. 520 p.).
22. Ludin D., Voitovich Yu., Salomatina E., Kuznetsova Yu., Grishin I., Fedushkin I., et al. Polymerization with borane chemistry. Tributylborane/p-quinone system as a new method of reversible-deactivation radical copolymerization for styrene and methyl acrylate. Macromolecular Research. 2020;28(9):851-860. https://doi.org/10.1007/s13233-020-8111-3.
23. Razuvaev G.A., Dodonov V.A., Brilkina T.G. Method for obtaining organoantimony diperoxides. Certificate of authorship USSR. 1979. (In Russian).
24. Zaitsev V.N. Complexing silicas: synthesis, grafted layer structure and surface chemistry. Khar'kov: Folio; 1997. 239 p. (In Russian).
25. Dehant I., Danz R., Kimmer W., Schmolke R. Infrared spectroscopy of polymers. (Russ. ed.: Dekhant I., Dants R., Kimmer V., Shmol'ke R. Infrakrasnaya spektroskopiya polimerov. Moscow: Khimiya; 1976. 472 p.).
26. Dodonov V.A., Grishin D.F., Aksenova I.N. Electrophilicity of propagating macroradicals as a rate-determining factor in coordination-radical polymerization of acrylic monomers. Vysokomolekulyarnye soedineniya. Seriya B = Polymer Science. Series B. 1993;35(12):2070-2072. (In Russian).
Review
For citations:
Kuznetsova Yu.L., Zhiganshina E.R., Gushchina K.S., Chesnokov S.A., Kuznetsova O.V. Polymerization of methyl methacrylate in the presence of tributylborane and aerosil. Proceedings of Universities. Applied Chemistry and Biotechnology. 2023;13(1):17-27. (In Russ.) https://doi.org/10.21285/2227-2925-2023-13-1-17-27