Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Drug discovery: a new bioactive compounds isolated from natural sources

https://doi.org/10.21285/2227-2925-2023-13-1-28-37

Abstract

A rise in mortality due to fungal infections in immunocompromised population has been observed lately. Nowadays, due to increased fungal infections, the limitations encountered in their treatment like resistance, side-effects and high toxicity, the rising over prescription and overuse of conventional antifungals all stimulate a search for alternative natural drugs. Therefore we are in dire need of natural newer strategies that involve reliable agents for the treatment of fungal diseases such as essential oils (EOs) are known for their anti-microbial properties and are multi-component in nature. Soil samples (66 samples) were collected from different agricultural fields and animals habitat of Saharanpur (U.P.). Isolation of keratinophilic fungi was carried out by hair baiting technique. Extraction of Mentha piperita and Cinnamomum vernum EO was carried out by hydrodistillation method and chemical composition of both extracted EOs was determined by Gas Chromatography-Mass Spectrophotometry (GC-MS). Antimycotic studies of EO was done by standard disc diffusion method. In the present study, the antifungal potential of M. piperita and C. vernum EOs was evaluated against three human pathogenic fungi isolated from the soil of agricultural field and animals habitat of Saharanpur (U.P.) i.e. Trichophyton mentagrophytes, T. tonsurans and T. equinum. The chemical composition of M. piperita and C. vernum EOs were analysed by GC-MS. Menthol (53.28%) was the major compound of the M. piperita EO followed by menthyl acetate (15.1%) and menthofuran (11.18%). Major constituents of C.vernum EO were linalool (8%), (E)-cinnamaldehyde (7.2%), β-caryophyllene (7.4%), eucalyptol (6.4%), and eugenol (5.6%). EOs of M. piperita and C. vernum have been found to have a remarkable and excellent antifungal activity against these pathogenic fungi. Present findings conclude that natural products like plant-derived EOs instead of chemotherapy and emergence of resistance to antifungal drugs can be regarded as an environmental safety mode of diseases control against pathogens.

About the Authors

R. Sharma
Mahatma Gandhi University of Medical Sciences & Technology
India

Richa Sharma - Dr., Associate Professor, Department of Microbiology, Mahatma Gandhi University of Medical Sciences & Technology.

Mahatma Gandhi Rd, Ricco Industrial Area, Sitapura, Jaipur, Rajasthan 302022



N. Choudhary
Dev Bhoomi Uttarkhand University
India

Neeraj Choudhary - Dr., Assistant Professor, Department of Microbiology, Dev Bhoomi Uttarkhand University.

Dev Bhoomi Campus, Chakrata Road, Manduwala, Naugaon, Uttarakhand 248007, Dehradun



R. Choudhary
Teoler High School
India

Rajat Choudhary - Student, Teoler High School.

Lalarpura, Jaipur, Rajasthan 302012



G. Sharma
MPS International
India

Gajanand Sharma - Dr., Head of Department of Chemistry, MPS International.

Bhabha Marg, Tilak Nagar, Jaipur, Rajasthan 302004



References

1. Khanam S.J.P., Jain P.C. Isolation of keratin degrading fungi from soil of Damoh (India). Asian Journal of Microbiology, Biotechnology and Environmental Sciences. 2002;4(2):251-254.

2. Mukesh S., Sharma M. Incidence of dermatophytes and other keratinophilic fungi in the schools and college playground soils of Jaipur, India. African Journal of Microbiology Research. 2010;4(24):2647-2654.

3. Marsella R., Mercantini R. Keratinophilic fungi isolated from soils of the Abruzzo National Park Italy. Mycopathologia. 2013;94(2):97-107.

4. Dominik T., Majchrowicz I. A trial for isolating keratinolytic and keratinophilic fungi from the soils of the cemeteries and forests of Szczecin. Ekologia Polska - Seria A. 1964;12:79-105.

5. Ajello L. The dermatophytes, Microsporum gypseum as a saprophyte and parasite. Journal of Investigative Dermatology. 1953;21(3):157-171. https://doi.org/10.1038/jid.1953.86.

6. AI-Doory Y. The occurrence of keratinophilic fungi in Texas soil. Mycopathol Mycol Appl. 1967;33:105-112. http://doi.org/10.1007/BF02053441.

7. Karam EI-Din A.A., Youssef A.Y., Zaki S. Distribution of pathogenic and potentially pathogenic fungi among soil fungal flora in Egypt. African Journal of Mycology and Biotechnology. 1996;4:23-39.

8. Hedayati M.T., Mohseni-Bandpi A., Moradi S. A survey on the pathogenic fungi in soil samples of potted plants from Sari hospitals, Iran. Journal of Hospital Infection. 2004;58(1):59-62. http://doi.org/10.1016/j.jhin.2004.04.011.

9. Ramesh V.M., Hilda A. Incidence of keratinophilic fungi in the soil of primary schools and public parks of Madras City, India. Mycopathol Mycol Appl. 1998;143:139-145. http://doi.org/10.1023/a:1006945012620.

10. Papini R., Mancianti F., Grassott G., Cardini G. Survey of keratinophilic fungi isolated from city park soils of Pisa, Italy. Mycopathol Mycol Appl. 1998;143(1):17-123. http://doi.org/10.1023/a:1006919707839.

11. Hidron A.I., Edwards J.R., Patel J., Horan T.C., Sievert D.M., Pollock D.A., et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infection Control & Hospital Epidemiology. 2008;29(11):996-1011. http://doi.org/10.1086/591861.

12. Mayrhofer S., Paulsen P., Smulders F.J.M., Hilbert F. Antimicrobial resistance profile of five major food-borne pathogens isolated from beef, pork and poultry. International Journal of Food Microbiology. 2004;97(1):23-29. http://doi.org/10.1016/j.ijfoodmicro.2004.04.006.

13. Zomorodian K., Haghighi N.N., Rajaee N., Pakshir K., Tarazooie B., Vojdhani M., et al. Assessment of Candida species colonization and denture-related stomatitis in complete denture wearers. Medical Mycology. 2011;49(2):208-211. http://doi.org/10.3109/13693786.2010.507605.

14. Chevalier M., Medioni E., Precheur I. Inhibition of Candida albicans yeast-hyphal transition and biofilm formation by Solidago virgaurea water extracts. Journal of Medical Microbiology. 2012;61(7):1016-1022. http://doi.org/10.1099/jmm.0.041699-0.

15. Sara B. Essential oils: their antibacterial properties and potential applications in foods - a review. International Journal of Food Microbiology. 2004;94:223-253. http://doi.org/10.1016/j.ijfoodmi-cro.2004.03.022.

16. Ahmet C., Saban K., Hamdullah K., Ercan K. Antifungal properties of essential oils and crude extracts of Hypericum linarioides Bosse. Biochemical Systematics and Ecology. 2005;33(3):245-256. http://doi.org/10.1016/j.bse.2004.08.006.

17. Tiwari R.D., Shrestha A.K. Antifungal activity of crude extracts of some medicinal plants against Fusarium solanai (Mart.) Sacc. Ecoprint: An International Journal of Ecology. 2009;16:75-78. https://doi.org/10.3126/eco.v16i0.3476.

18. Mishra A.K., Dubey N.K. Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food commodities. Applied and Environmental Microbiology. 1994;60(4):1101-1105. http://doi.org/10.1128/aem.60.4.1101-1105.1994.

19. Bagamboula C.F., Uyttendaele M., Debevere J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiology. 2004;21(1):33-42. https://doi.org/10.1016/S0740-0020(03)00046-7.

20. White T.C., Holleman S., Mirels L.F., Stevens D.A. Resistance mechanisms in clinical isolates of Candida albicans. Antimicrobial Agents and Chemotherapy. 2002;46(6):1704-1713. http://doi.org/10.1128/AAC.46.6.1704-1713.2002.

21. Moreira M.R., Ponce A.G., del Valle C.E., Roura S.I. Inhibitory parameters of essential oils to reduce a food-borne pathogen. Lebensmittel-Wissenschaft & Technologie. 2005;38(5):565-570. https://doi.org/10.1016/j.lwt.2004.07.012.

22. Souza E.L., de Barros J.C., de Olivieria C.E.V., da Conceicao M.L. Influence of Origanum vulgare L. essential oil on enterotoxin production, membrane permeability and surface characteristics of Staphylococcus aureus. International Journal of Food Microbiology. 2010;137(2-3):308-311. http://doi.org/10.1016/j.ijfoodmicro.2009.11.025.

23. Derwich E., Benziane Z., Taouil R., Senhaji O., Touzani M. Aromatic plants of morocco: GC/MS analysis of the essential oils of leaves of Mentha piperita. Advances in Environmental Biology. 2010;4(1):80-85.

24. Tyagi A.K., Malik A. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complementary and Alternative Medicine. 2010;10:65. http://doi.org/10.1186/1472-6882-10-65.

25. Sandasi M., Leonard C.M., Viljoen A.M. The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Letters in Applied Microbiology. 2010;50(1):30-35. http://doi.org/10.1111/j.1472-765X.2009.02747.x.

26. Baliga M., Rao S. Radioprotective potential of mint: a brief review. Journal of Cancer Therapeutics and Research. 2010;6(3):255-262. http://doi/10.4103/0973-1482.73336.

27. Nabavi S.M., Marchese A., Izadi M., Curti V., Daglia M., Nabavi S.F. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chemistry. 2015;173:339-347. http://doi.org/10.1016/j.foodchem.2014.10.042.

28. Hogberg L.D., Heddini A., Cars O. The global need for effective antibiotics: Challenges and recent advances. Trends in Pharmacological Sciences. 2010;31(11):509-515. http://doi.org/10.1016/j.tips.2010.08.002.

29. Wong Y.C., Ahmad-Mudzaqqirand M.Y., Wan-Nurdiyana W.A. Extraction of essential oil from Cinnamon (Cinnamomum zeylanicum). Oriental Journal of Chemistry. 2014;30(1):37-47. http://doi.org/10.13005/ojc/300105.

30. Muchuweti M., Kativu E., Mupure C.H., Chidewe C., Ndhlala A.R., Benhura M.A.N. Phenolic composition and antioxidant properties of some spices. American Journal of Food Technology. 2007;2(5):414-420. http://doi.org/10.3923/ajft.2007.414.420.

31. Chevalier M., Medioni E., Precheur I. Inhibition of Candida albicans yeast-hyphal transition and biofilm formation by Solidago virgaurea water extracts. Journal of Medical Microbiology. 2012;61(7):1016-1022. http://doi.org/10.1099/jmm.0.041699-0.

32. Saharkhiz M.J., Ghani A., Khayat M. Changes in essential oil composition of Clary sage (Salvia sclarea L.) aerial parts during its phenological cycle. Medicinal and Aromatic Plant Science and Biotechnology. 2009; 3:90-93.

33. Vanbreuseghem R. Technique biologique pour 1 isolement des dermatophytes du soil. Annales de la Societe belge de medecine tropicale. 1952;32:173-178.

34. Sharma G., Sharma R., Saxena R., Rajni E. Synergistic, antidermatophytic activity and chemical composition of essential oils against zoonotic dermatophytosis. Russian Journal of Bioorganic Chemistry. 2022;48:1338-1347. https://doi.org/10.1134/S1068162022060218.

35. Gould J.C., Bowie J.H. The determination of bacterial sensitivity to antibiotics. Edinburgh Medical Journal. 1952;59(4):178-199.

36. Deshmukh S.K., Agrawal S.C. Degradation of human hair by some dermatophytes and other keratinolphilic fungi. Myksosen. 1982;25(8):463-466. http://doi.org/10.1111/j.1439-0507.1982.tb01965.x.

37. Shadzis S., Chadeganipour M., Alimoradi M. Isolation of keratinophilic fungi from elementary schools and public parks in Isfahan, Iran. Mycoses. 2002;45(11-12):496-499. https://doi.org/10.1046/j.1439-0507.2002.00798.x.

38. Shukia P., Shukla C.B., Kango N., Shukla A. Isolation and characterization of a dermatophyte, Microsporum gypseum from poultry farm soils of Rewa (Madhya Pradesh), India. Pakistan Journal of Biological Sciences. 2003;6(6):622-625. https://doi.org/10.3923/pjbs.2003.622.625.

39. Sharma R., Rajak R.C. Keratinophilic fungi: Nature's keratin degrading machines. Their isolation identification and ecological role. Resonance. 2003;8:28-40. http://doi.org/10.1007/BF02837919.

40. Marchisio M.V. Keratinophilic fungi: their role in nature and degradation of keratinic substrates. In: Biology of dermatophytes and other keratinophilic fungi. 2000; vol. 7, p. 77-85.

41. Cabanes F.J. Emerging mycotoxins: introduction. Review Iberoam Micologia. 2002;17(2):S61-S62.

42. Baranova Z., Kozak M., Bilek J. Zoophilic dermatomycosis in a family caused by Trichophyton mentagrophytes var. quincheanum - A case report. Acta Veterinaria Brno. 2003;72(2):311-314. https://doi.org/10.2754/avb200372020313.

43. Ali-Shtayeh M.S. Keratinophilic fungi isolated from childrens sandpits in the Nablus area west bank of Jordan. Mycopathologia. 1988;103:141-146. http://doi.org/10.1007/BF00436812.

44. Ramesh V.M., Hilda A. Incidence of keratinophilic fungi in the soil of primary schools and public parks of Madras City, India. Mycopathologia. 1998;143(3):139-145. http://doi.org/10.1023/a:1006945012620.

45. Gianni C., Cerri A., Crostic C. Non-dermatophytic onychomycosis. N underestimated entity? A study of 51 cases. Mycoses. 2000;43(1-2):29-33. http://doi.org/10.1046/j.1439-0507.2000.00547.x.

46. Hofling J.F., Anibal P.C., Obando-Pereda G.A., Peixoto I.A.T., Furletti V.F., Foglio M.A., et al. Antimicrobial potential of some plant extracts against Candida species. Brazilian Journal of Biology. 2010;70(4):1065-1068. http://doi.org/10.1590/s1519-69842010000500022.

47. Unlu M., Ergene E., Unlu G.V., Zeytinoglu H.S., Vural N. Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food Chemical Toxicol. 2010;48(11):3274-3280. http://doi.org/0.1016/j.fct.2010.09.001.

48. Gende L.B., Floris I., Fritz R., Eguaras M.J. Antimicrobial activity of cinnamon (Cinnamomum zeylanicum) essential oil and its main components against Paenibacillus larvae from Argentine. Bulletin of Insectology. 2008;61(1):1-4.

49. Wuthi-Udomlert M., Grisanapa W., Luanratana O., Caichompoo W. Antifungal activity of Curcuma longa grown in Thailand. Southeast Asian Journal of Tropical Medicine. 2000;31(1):178-182.

50. Falahati M., Tabrizib N.O., Jahaniani F. Antidermatophyte activities of Eucalyptus canalduensis in comparison with griseofulvin. Iranian Journal of Pharmacology and Therapeutics. 2005;4:80-83.

51. Sharma R., Sharma G.N., Sharma M. Additive and inhibitory effect of antifungal activity of Curcuma longa (Turmeric) and Zingiber officinale (Ginger) essential oils against Pityriasis versicolor infections. Journal of Medicinal Plants. 2011;5(32):6987-6990. http://doi.org/10.5897/JMPR11.1032.

52. Chin Y.W., Balunas M.J., Chai H.B., Kinghorn A.D. Drug discovery from natural sources. AAPS Journal. 2006;8(2):E239-E253. http://doi.org/10.1007/BF02854894.

53. Harvey A.L. Natural products as a screening resource. Current Opinion in Chemical Biology. 2007;11(5):480-484. http://doi.org/10.1016/j.cbpa.2007.08.012.

54. Jayaprakasha G.K., Rao L.J.M., Sakariah K.K. Volatile constituents from Cinnamomum zeylanicum fruit stalks and their antioxidant activities. Journal of Agricultural and Food Chemistry. 2003;51:4344-4348. http://doi.org/10.1021/jf034169i.

55. Al-Ali S., Al-Judaibi A. Effect of natural products and essentials oils on pathogenic fungi. Acta Scientific Microbiology. 2019;2(6):2581-3226. http://doi.org/10.31080/ASMI.2019.02.0255.

56. Kizil S., Ha§imi N., Tolan V., Kiling E., Yuksel U. Mineral content, essential oil components and biological activity of two mentha species (M. piperita L., M. spicata L.). Turkish Journal of Field Crops. 2010;15(2):148-153. http://doi.org/10.17557/TJFC.56629.

57. Lima B., Lopez S., Luna L., Aguero M.B., Aragon L., Tapia A., et al. Essential oils of medicinal plants from the central andes of Argentina: chemical composition, and antifungal, antibacterial, and insect-repellent activities. Chemistry & Biodiversity. 2011;8(5):924-936. http://doi.org/10.1002/cbdv.201000230.

58. Agarwal V., Lal P., Pruthi V. Prevention of Candida albicans biofilm by plant oils. Mycopathologia. 2008;165(1):13-19. http://doi.org/10.1007/s11046-007-9077-9.

59. Shiming Li., Lo C.Y., Ho C.T. Hydronylated polymrthoxplavones and mentholated flavonioid in sweel orange peel. Journal of Agricultural and Food Chemistry. 2006;54(12):4176-4185. http://doi.org/10.1021/jf060234n.

60. Trombetta D., Castelli F., Sarpietro M.G. Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy. 2005;49(6):2474-2478. http://doi.org/10.1128/AAC.49.6.2474-2478.2005.

61. Ultee A., Bennik M.H.J., Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology. 2002;68(4):1561-1568. http://doi.org/10.1128/AEM.68.4.1561-1568.2002.


Review

For citations:


Sharma R., Choudhary N., Choudhary R., Sharma G. Drug discovery: a new bioactive compounds isolated from natural sources. Proceedings of Universities. Applied Chemistry and Biotechnology. 2023;13(1):28-37. https://doi.org/10.21285/2227-2925-2023-13-1-28-37

Views: 520


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)