Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

Повышение устойчивости культуры клеток Arabidopsis thaliana к фториду натрия за счет конститутивной экспрессии HSP101

https://doi.org/10.21285/2227-2925-2023-13-3-434-441

EDN: PQNFQN

Аннотация

Фтор является одним из токсических компонентов выбросов промышленных предприятий. Повышенное содержание фтора в атмосфере, почве или воде негативно влияет на рост и развитие растений, а также снижает устойчивость к различным стрессовым факторам окружающей среды. Увеличение температуры окружающей среды вызывает у всех организмов защитный ответ в виде синтеза белков теплового шока. У растений имеется специфический белок НSP101, который выполняет функцию защиты клеток от тепловых повреждений и также является ответственным за индуцируемую термотолерантность – способность организмов выдерживать воздействие жесткого теплового шока, будучи предварительно подвергнутыми действию мягкого теплового стресса, в результате которого индуцируются белки теплового шока. Известно, что белки теплового шока участвуют в защите не только от повышенных температур, но и от других различных стрессовых факторов. В настоящей работе было изучено влияние обработки фторидом натрия на жизнеспособность культуры клеток Arabidopsis thaliana, экспрессию и синтез белков теплового шока, а также роль белка теплового шока HSP101 в устойчивости к фтору. Показано, что фторид натрия значительно снижает жизнеспособность клеток A. thaliana, подавляет активацию экспрессии гена HSP101 при повышении температуры. В то же время линия A. thaliana с конститутивной экспрессией гена HSP101 оказалась более устойчива к токсичному действию фторида натрия.

Об авторах

Е. Л. Горбылева
Сибирский институт физиологии и биохимии растений СО РАН
Россия

Горбылева Елена Леонидовна - кандидат биологических наук, младший научный сотрудник.

664033, Иркутск, ул. Лермонтова, 132



М. А. Сафонова
Байкальский гуманитарный институт
Россия

Сафонова Мария Александровна - кандидат биологических наук, преподаватель.

664011, Иркутск, ул. Карла Маркса, 37



А. В. Степанов
Сибирский институт физиологии и биохимии растений СО РАН
Россия

Степанов Алексей Владимирович - кандидат биологических наук, старший научный сотрудник.

664033, Иркутск, ул. Лермонтова, 132



Е. Г. Рихванов
Сибирский институт физиологии и биохимии растений СО РАН
Россия

Рихванов Евгений Геннадьевич - доктор биологических наук, старший научный сотрудник.

664033, Иркутск, ул. Лермонтова, 132



Список литературы

1. Ипатова В.И., Габдуллина Р.И. Интерактивный эффект алюминия и фтора в присутствии микроводоросли // Экологические системы и приборы. 2022. N 7. С. 36-47. https://doi.org/10.25791/esip.7.2022.1309. EDN: WAEWMX.

2. Zouari M., Elloumi N., Bellassoued K., Ben Ahmed C., Krayem M., Delmail D., et al. Enzymatic antioxidant responses and mineral status in roots and leaves of olive plants subjected to fluoride stress // South African Journal of Botany. 2017. Vol. 111. P. 44–49. https://doi.org/10.1016/j.sajb.2017.03.039.

3. Bhargava D., Bhardwaj N. Phytotoxicity of fluoride on a wheat variety Triticum aestivum var. Raj. 4083 and its bioaccumulation at the reproductive phase // Asian Journal of Experimental Sciences. 2011. Vol. 25, no. 1. P. 37–40. https://doi.org/10.3390/app10196971.

4. Jarosz Z., Pitura K. Fluoride toxicity limit – can the element exert a positive effect on plants? // Sustainability. 2021. Vol. 13, no. 21. P. 12065. https://doi.org/10.3390/su132112065.

5. Fornasiero R.B. Phytotoxic effects of fluorides // Plant Science. 2001. Vol. 161, no. 5. P. 979–985. https://doi.org/10.1016/S0168-9452(01)00499-X.

6. Kumar K., Giri A., Vivek P., Kalaiyarasan T., Kumar B. Effects of fluoride on respiration and photosynthesis in plants: an overview // Annals of Environmental Science and Toxicology. 2017. Vol. 2, no. 1. P. 43–47. https://doi.org/10.17352/aest.000011.

7. Cai H., Dong Y., Li Y., Li D., Peng C., Zhang Z., et al. Physiological and cellular responses to fluoride stress in tea (Camellia sinensis) leaves // Acta Physiologiae Plantarum. 2016. Vol. 38. P. 144. https://doi.org/10.1007/s11738-016-2156-0.

8. Sachan P., Lal N. Effect of sodium fluoride on germination, seedling growth and photosynthetic pigments in Cicer arietinum L. and Hordeum vulgare L. // Ecology & Environmental Sciences. 2018. Vol. 3, no. 4. P. 300–304. https://doi.org/10.15406/mojes.2018.03.00103.

9. Gao J., Liu C., Zhang J., Zhu S., Shen Y., Zhang R. Effect of fluoride on photosynthetic pigment content and antioxidant system of Hydrilla verticillata // International Journal of Phytoremediation. 2018. Vol. 20, no. 12. P. 1257–1263. https://doi.org/10.1080/15226514.2017.1319328.

10. Mondal N.K. Effect of fluoride on photosynthesis, growth and accumulation of four widely cultivated rice (Oryza sativa L.) varieties in India // Ecotoxicology and Environmental Safety. 2017. Vol. 144. P. 36–44. https://doi.org/10.7717/peerj.13434.

11. Singh S., Singh J., Singh N. Studies on the impact of fluoride toxicity on growth parameters of Raphanus sativus L. // Indian Journal of Scientific Research. 2013. Vol. 4, no. 1. P. 61–63.

12. Doley D., Hill R.J., Riese R.H. Environmental fluoride in Australasia: ecological effects, regulation and management // Clean Air and Environmental Quality. 2004. Vol. 38, no. 2. P. 35–55.

13. Rikhvanov E.G., Gamburg K.Z., Varakina N.N., Rusaleva T.M., Fedoseeva I.V., Tauson E.L., et al. Nuclear-mitochondrial cross-talk during heat shock in Arabidopsis cell culture // Plant Journal. 2007. Vol. 52, no. 4. P. 763–778. https://doi.org/10.1111/j.1365-313X.2007.03275.x.

14. Qin F., Yu B., Li W. Heat shock protein 101 (HSP101) promotes flowering under nonstress conditions // Plant Physiology. 2021. Vol. 186, no. 1. P. 407–419. https://doi.org/10.1093/plphys/kiab052.

15. Queitsch C., Hong S.W., Vierling E., Lindquist S. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis // Plant Cell. 2000. Vol. 12, no. 4. P. 479–492. https://doi.org/10.1105/tpc.12.4.479.

16. Еникеев А.Г., Высоцкая Е.Ф., Леонова Л.А. Об использовании 2,3,5-трифенилтетразолий хлорида для оценки жизнеспособности культур растительных клеток // Физиология растений. 1995. Т. 42. N 3. С. 423–426.

17. Lowry O.H., Rosebrough N.I., Farr A.L., Randell R.J. Protein measurement with the Folin phenol reagent // Journal of Biological Chemistry. 1951. Vol. 193, no. 1. P. 265–275.

18. Pant P., Bhiravamurthy P. Effects of fluoride on early root and shoot growth of typical crop plants of India // Fluoride. 2008. Vol. 41, no. 1. P. 57–60.

19. Reddy M.P., Kaur M. Sodium fluoride induced growth and metabolic changes in Salicornia brachiata Roxb // Water, Air, and Soil Pollution. 2008. Vol. 188. P. 171–179. https://doi.org/10.1007/s11270-007-9533-7.

20. Матяшенко Г.В., Шмаков В.Н., Константинов Ю.М., Белоголова Г.А. Влияние экологических факторов на накопление фтора лиственницами (Larix gmelinii (Rupr.) Rupr. и L. sibirica Ledeb.) в Восточной Сибири // Экология. 2005. N 6. C. 434–437. EDN: HSIPKV.

21. Пуляевская М.А., Варакина Н.Н., Гамбург К.З., Русалёва Т.М., Степанов А.В., Войников В.К. [и др.]. Фторид натрия подавляет синтез БТШ в культуре клеток Arabidopsis thaliana, подвергнутых воздействию теплового стресса // Физиология растений. 2011. Т. 58. N 4. С. 533–541.

22. Ogawa D., Yamaguchi K., Nishiuchi T. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth // Journal of Experimental Botany. 2007. Vol 58, no. 12. P. 3373–3383. https://doi.org/10.1093/jxb/erm184.

23. Banti V., Mafessoni F., Loreti E., Alpi A., Perata P. The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis // Plant Physiology. 2010. Vol. 152, no. 3. P. 1471–1483. https://doi.org/10.1104/pp.109.149815.

24. Saidi Y., Domini M., Choy F., Zryd J.P., Schwitzguebel J.P., Goloubinoff P. Activation of the heat shock response in plants by chlorophenols: transgenic Physcomitrella patens as a sensitive biosensor for organic pollutants // Plant, Cell and Environment. 2007. Vol. 30, no. 6. P. 753–763. https://doi.org/10.1111/j.1365-3040.2007.01664.x.

25. Kanzaki H., Saitoh H., Ito A., Fujisawa S., Kamoun S., Katou S., et al. Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana // Molecular Plant Pathology. 2003. Vol. 4, no. 5. P. 383–391. https://doi.org/10.1046/j.1364-3703.2003.00186.x.

26. Еникеев А.Г., Копытина Т.В., Семёнова Л.А., Шафикова Т.Н., Гаманец Л.В., Волкова О.Д. [и др.]. Культуры клеток табака, трансформированные геном hsp101, обладают повышенной устойчивостью к фториду калия // Доклады Академии наук. 2010. Т. 430. N 1. С. 137–138.


Рецензия

Для цитирования:


Горбылева Е.Л., Сафонова М.А., Степанов А.В., Рихванов Е.Г. Повышение устойчивости культуры клеток Arabidopsis thaliana к фториду натрия за счет конститутивной экспрессии HSP101. Известия вузов. Прикладная химия и биотехнология. 2023;13(3):434-441. https://doi.org/10.21285/2227-2925-2023-13-3-434-441. EDN: PQNFQN

For citation:


Gorbyleva E.L., Safonova M.A., Stepanov A.V., Rikhvanov E.G. Increased Arabidopsis thaliana cell culture resistance to sodium fluoride by constitutive expression of HSP101. Proceedings of Universities. Applied Chemistry and Biotechnology. 2023;13(3):434-441. (In Russ.) https://doi.org/10.21285/2227-2925-2023-13-3-434-441. EDN: PQNFQN

Просмотров: 237


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)