Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Ternary cesium(rubidium) tungstates: production and impedance spectroscopy

https://doi.org/10.21285/achb.910

EDN: YBFJXA

Abstract

   The work is aimed at the directed synthesis of new phases of tungstates containing mono-, tri-, and tetravalent metals, as well as the determination of their crystallographic, thermal, and electrophysical properties.

   The study used the method of solid-phase synthesis to obtain tungstate phases with composition MRA0.5(WO4)(M – singly, R – triply-, and A – tetra-charged elements) within the temperature range of 400–750 °С. Their crystallographic and thermal characteristics were determined. The synthesized ternary tungstates crystallizing in a hexagonal system were studied using differential scanning calorimetry. The technique revealed an increase in the melting temperatures of compounds with increasing ionic radius of the trivalent cation in the series CsRTi0.5(WO4)(R = Al, Cr, Ga, Fe, In). The same correlation is observed when switching from rubidium to cesium derivatives. The thermal stability of ternary titanium and hafnium tungstates was compared. The melting temperatures of RbRTi0.5(WO4)are about 20 °С higher than those of their hafnium counterparts. The dielectric characteristics of CsRTi0.5(WO4)(R = Fe, Cr) belonging to the ternary tungstate family were analyzed via impedance spectroscopy. The temperature and frequency dependences of the conductivity of ternary tungstates at different frequencies (1 Hz – 1 mHz), measured in heating and cooling modes, are characterized by a slight temperature hysteresis, reaching 10-2–10-3 S/cm in the high-temperature region at activation energy values of 0.4–0.5 eV. The impedance frequency spectra measured within the range of 1 Hz – 1 mHz at different temperatures confirm the ion-conducting properties of the sample, which allows the obtained phases to be considered promising solid electrolytes.

About the Authors

S. G. Dorzhieva
Baikal Institute of Nature Management SB RAS
Russian Federation

Sesegma G. Dorzhieva, Cand. Sci. (Chemistry), Senior Researcher

670047; 6, Sakhyanova St.; Ulan-Ude



J. G. Bazarova
Baikal Institute of Nature Management SB RAS
Russian Federation

Jibzema G. Bazarova, Dr. Sci. (Chemistry), Professor, Chief Researcher

670047; 6, Sakhyanova St.; Ulan-Ude



References

1. Lee K.H., Chae K.-W., Cheon C.I., Kim J.S. Photoluminescence and structural characteristics of double tungstates A(M<sub>1−X</sub> Pr<sub>X</sub>)W<sub>2</sub>O<sub>8</sub> (A = Li, Cs, M = Al, Sc, La). Journal of the European Ceramic Society. 2010;30(2):243-247. DOI: 10.1016/j.jeurceramsoc.2009.05.048.

2. Yu Y., Wu S., Zhu X., Zhang X., Yu H., Qiu H., et al. Crystal growth, structure, optical properties and laser performance of new tungstate Yb:Na<sub>2</sub>La<sub>4</sub>(WO<sub>4</sub>)<sub>7 crystals. Optical Materials. 2021;111:110653. DOI: 10.1016/j.optmat.2020.110653.

3. Bazarov B.G., Dorzhieva S.G., Shendrik R.Yu., Tushinova Yu.L., Bazarova Ts.T., Sofich D.O., et al. Synthesis and luminescent properties of new double Ln<sub>2</sub>Zr(WO<sub>4</sub>)<sub>5</sub> (Ln = Tb, Dy) tungstates. Chimica Techno Acta. 2022;9(2):20229205. DOI: 10.15826/chimtech.2022.9.2.05.

4. Dorzhieva S.G., Bazarova J.G., Bazarov B.G. Exploration of phase equilibria in the triple molybdate system, electrical properties of new Rb<sub>5</sub>M<sub>1/3</sub>Zr<sub>5/3</sub>(MoO<sub>4</sub>)<sub>6</sub> (M – Ag, Na) phases. Journal of Phase Equilibria and Diffusion. 2021;42:824-830. DOI: 10.1007/s11669-021-00927-4.

5. Tsyretarova S.Yu., Kozhevnikova N.M., Eremina N.S., Mokrousov G.M. Synthesis of red phosphors based on borosilicate glass and NaMgSc<sub>0.5</sub>Lu<sub>0.5</sub>(MoO<sub>4</sub>)<sub>3</sub>:Eu<sup>3+</sup> and Na<sub>0.5</sub>Mg<sub>0.5</sub>ScLu<sub>0.5</sub>(MoO<sub>4</sub>)<sub>2</sub>:Eu<sup>3+</sup> NASICON phases of variable composition. Neorganicheskie materialy. 2015;51(12):1374-1379. (In Russian). DOI: 10.7868/S0002337X15120143. EDN: UJHQLB.

6. Dhiaf M., Megdiche Borchani S., Gargouri M., Guidara K., Megdiche M. Temperature-dependent impedance spectroscopy of monovalent double tungstate oxide. Journal of Alloys and Compounds. 2018;767:763-774. DOI: 10.1016/j.jallcom.2018.07.128.

7. Hota S.S., Panda D., Choudhary R.N.P. Studies of structural, dielectric, and electrical properties of polycrystalline barium bismuth tungstate for thermistor application. Inorganic Chemistry Communications. 2023;153:110785. DOI: 10.1016/j.inoche.2023.110785.

8. Buzlukov A.L., Fedorov D.S., Serdtsev A.V., Kotova I.Yu., Tyutyunnik A.P., Korona D.V. Ion mobility in triple sodium molybdates and tungstates with a NASICON structure. Journal of Experimental and Theoretical Physics. 2022;134:42-50. DOI: 10.1134/S1063776122010071.

9. Serdtsev A., Kotova I., Medvedeva N. First-principles study of electronic structure, sodium diffusion, and (de) intercalation in NASICON NaMR(MoO<sub>4</sub>)<sub>3</sub> (M = Mg, Ni; R = Cr, Fe). Ionics. 2021;27:3383-3392. DOI: 10.1007/s11581-021-04133-7.

10. Bai C., Lei C., Pan S., Wang Y., Yang Z., Han S., et al. Syntheses, structures and characterizations of Rb<sub>3</sub>Na(MO<sub>4</sub>)<sub>2</sub> (M = Mo, W) crystals. Solid State Sciences. 2014;33:32-37. DOI: 10.1016/j.solidstatesciences.2014.04.011.

11. Dorzhieva S.G., Sofich D.O., Bazarov B.G., Shendrik R.Yu., Bazarova J.G. Optical properties of molybdates containing a combination of rare-earth elements. Neorganicheskie materialy. 2021;57(1):57-62. (In Russian). DOI: 10.31857/S0002337X21010048. EDN: UGRZBV.

12. Kozhevnikova N.M. Erbium-doped upconversion phosphor in the K<sub>2</sub>MoO<sub>4</sub>–BaMoO<sub>4</sub>–Lu<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> system. Neorganicheskie materialy. 2021;57(2):181-188. (In Russian). DOI: 10.31857/S0002337X21010097. EDN: KMPXTG.

13. Zouaoui M., Jendoubi I., Zid M.F., Bourguiba N.F. Synthesis, crystal structure and physico-chemical investigations of a new lyonsite molybdate Na<sub>0.24</sub>Ti<sub>1.44</sub>(MoO<sub>4</sub>)<sub>3</sub>. Journal of Solid State Chemistry. 2021;300:122221. DOI: 10.1016/j.jssc.2021.122221.

14. Tolstov K.S., Politov B.V., Zhukov V.P., Chulkov E.V., Kozhevnikov V.L. Oxygen non-stoichiometry and phase decomposition of double perovskite-like molybdates Sr<sub>2</sub>MMoO<sub>6–δ</sub>, where M = Mn, Co, and Ni. Materials Letters. 2022;316:132039. DOI: 10.1016/j.matlet.2022.132039.

15. Jansi Rani B., Swathi S., Yuvakkumar R., Ravia G., Rajalakshmi R., A.G. Al-Sehemi, et al. Samarium doped barium molybdate nanostructured candidate for supercapacitors. Journal of Energy Storage. 2022;56(A):105945. DOI: 10.1016/j.est.2022.105945.

16. Kozhevnikova N.M., Batueva S.Y., Gadirov R.M. Luminescence properties of Eu<sup>3+</sup>-doped K<sub>1–x</sub>Mg<sub>1–x</sub>Sc(Lu)<sub>1+x</sub>(MoO<sub>4</sub>)<sub>3</sub> (0 ≤ х ≤ 0.5) solid solutions. Neorganicheskie materialy. 2018;54(5):482-487. (In Russian). DOI: 10.7868/S0002337X18050081. EDN: XNRPZZ.

17. Yang Y., Li F., Lu Y., Du Y., Wang L., Chen S., et al. CaGdSbWO<sub>8</sub>:Sm<sup>3+</sup>: a deep-red tungstate phosphor with excellent thermal stability for horticultural and white lighting applications. Journal of Luminescence. 2022;251:119234. DOI: 10.1016/j.jlumin.2022.119234.

18. Romanova E.Yu., Bazarov B.G., Klevtsova R.F., Glinskaya L.A., Tushinova Yu.L., Fedorov K.N., et al. Phase formation in the K<sub>2</sub>MoO<sub>текст</sub>4–Lu<sub>2</sub>(MoO<sub>4</sub>)–Hf(MoO<sub>4</sub>)<sub>2</sub> system and the structural study of triple molybdate K<sub>5</sub>LuHf(MoO<sub>4</sub>)<sub>6</sub>. Zhurnal neorganicheskoi khimii. 2007;52(5):815-818. (In Russian). EDN: IASCEH.

19. Bazarov B.G., Klevtsova R.F., Chimitova O.D., Glinskaya L.A., Fedorov K.N., Tushinova Yu.L., et al. Phase formation in the system Rb<sub>2</sub>MoO<sub>4</sub>–Er<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>–Hf(MoO<sub>4</sub>)<sub>2</sub>. The crystal structure of the new triple molybdate Rb<sub>5</sub>ErHf(MoO<sub>4</sub>)<sub>6</sub>. Zhurnal neorganicheskoi khimii. 2006;51(5):866-870. (In Russian). EDN: HTICAN.

20. Namsaraeva T.V., Bazarov B.G., Klevtsova R.F., Glinskaya L.A., Fedorov K.N., & Bazarova Zh.G. Subsolidus phase equilibrium in Cs<sub>2</sub>Mo0<sub>4</sub>–Al<sub>2</sub>(Mo0<sub>4</sub>)<sub>3</sub>–Zr(Mo0<sub>4</sub>)<sub>2</sub> system and crystal structure of new ternary molybdate CsAlZr<sub>0.5</sub>(MoO<sub>4</sub>)<sub>3</sub>. Russian Journal of Inorganic Chemistry. 2010;55:209-214. DOI: 10.1134/S0036023610020129.


Review

For citations:


Dorzhieva S.G., Bazarova J.G. Ternary cesium(rubidium) tungstates: production and impedance spectroscopy. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(2):166-172. (In Russ.) https://doi.org/10.21285/achb.910. EDN: YBFJXA

Views: 234


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)