Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

Предварительная гидротермическая обработка и паровой взрыв целлюлозосодержащего сырья для последующей биотехнологической трансформации: обзор

https://doi.org/10.21285/achb.919

EDN: IDUAXB

Аннотация

   Использование возобновляемых источников целлюлозосодержащего сырья для получения продуктов с высокой добавленной стоимостью является актуальной темой. Целлюлозосодержащее сырье представляет собой природную матрицу, состоящую из целлюлозы (38–50 %), лигнина (10–25 %), гемицеллюлоз (23–32 %). Для ее разрушения необходимо использовать предварительную обработку с удалением гемицеллюлоз и лигнина. Такого рода воздействие позволяет изменить химический состав и структуру целлюлозы, а также повысить пористость. В обзоре представлен анализ информации по гидротермической обработке и паровому взрыву целлюлозосодержащего сырья (солома подсолнечника, газонная трава, опилки тополя, сено, тростник, осина, гигантский тростник, силос и т. д.) с целью конверсии в субстраты для синтеза биотехнологических продуктов (белок, биоводород, биогаз, левулиновая кислота, метан, молочная кислота, этанол, янтарная кислота). При гидротермической обработке сырье обрабатывают при температуре 160–240 °С в воде под высоким давлением.  Давление используется для поддержания воды в жидком состоянии. При паровом взрыве сырье подвергается обработке паром при умеренной температуре и давлении в течение определенного времени. Затем давление быстро сбрасывается, при этом происходит расширение волокон целлюлозосодержащего сырья. Эффективность процессов гидротермической обработки и парового взрыва зависит как от типа сырья (химический состав, концентрация твердого вещества, свойства твердого вещества), так и от условий проведения гидротермической обработки и парового взрыва.

Об авторе

Е. К. Гладышева
Институт проблем химико-энергетических технологий СО РАН
Россия

Евгения Константиновна Гладышева, к. т. н., научный сотрудник

659322; ул. Социалистическая, 1; Бийск



Список литературы

1. Chen W.-H., Nižetić S., Sirohi R., Huang Z., Luque R., Papadopoulos A.M., et al. Liquid hot water as sustainable biomass pretreatment technique for bioenergy production : a review // Bioresource Technology. 2022. Vol. 344. P. 126207. DOI: 10.1016/j.biortech.2021.126207.

2. Макарова Е.И., Будаева В.В. Биоконверсия непищевого целлюлозосодержащего сырья. Часть 1 // Известия вузов. Прикладная химия и биотехнология. 2016. Т. 6. N 2. С. 43–50. DOI: 10.21285/2227-2925-2016-6-2-43-50. EDN: WAJUUX.

3. Kim D. Physico-chemical conversion of lignocel-lulose: inhibitor effects and detoxification strategies : a mini review // Molecules. 2018. Vol. 23, no. 2. P. 309. DOI: 10.3390/molecules23020309.

4. Antczak A., Szadkowski J., Szadkowska D., Zawadzki J. Assessment of the effectiveness of liquid hot water and steam explosion pretreatments of fast-growing poplar (Populus trichocarpa) wood // Wood Science and Technology. 2022. Vol. 56. P. 87–109. DOI: 10.1007/s00226-021-01350-1.

5. Chen H., Liu J., Chang X., Chen D., Xue Y., Liu P., et al. A review on the pretreatment of lignocellulose for high-value chemicals // Fuel Processing Technology. 2017. Vol. 160. P. 196–206. DOI: 10.1016/j.fuproc.2016.12.007.

6. Zhou Z., Liu D., Zhao X. Conversion of lignocellulose to biofuels and chemicals via sugar platform : an updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose // Renewable and Sustainable Energy Reviews. 2021. Vol. 146. P. 111169. DOI: 10.1016/j.rser.2021.111169.

7. Chen W.-H., Wang C.-W., Ong H.C., Show P.L., Hsieh T.-H. Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin // Fuel. 2019. Vol. 258. P. 116168. DOI: 10.1016/j.fuel.2019.116168.

8. Hydrothermal processing in biorefineries. Production of bioethanol and high added-value compounds of second and third generation biomass / H.A. Ruiz, M.H. Thomsen, H.L. Trajano. Cham: Springer, 2017. 511 p. DOI: 10.1007/978-3-319-56457-9.

9. Павлов И.Н. Влияние автогидролитической обработки Miscanthus sacchariflorus Andersson на выход редуцирующих веществ при последующем ферментолизе // Известия вузов. Прикладная химия и биотехнология. 2020. Т. 10. N 2. С. 303–313. DOI: 10.21285/2227-2925-2020-10-2-303-313. EDN: WMKYYJ.

10. Yoo C.G., Meng X., Pu Y., Ragauskas A.J. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies : a comprehensive review // Bioresource Technology. 2020. Vol. 301. P. 122784. DOI: 10.1016/j.biortech.2020.122784.

11. Hu F., Ragauskas A. Pretreatment and lignocel-lulosic chemistry // Bioenergy Research. 2012. Vol. 5. P. 1043–1066. DOI: 10.1007/s12155-012-9208-0.

12. Lamp A., Kaltschmitt M., Lüdtke O. Protein recovery from bioethanol stillage by liquid hot water treatment // The Journal of Supercritical Fluids. 2020. Vol. 155. P. 104624. DOI: 10.1016/j.supflu.2019.104624.

13. Dimitrellos G., Lyberatos G., Antonopoulou G. Does acid addition improve liquid hot water pretreatment of lignocellulosic biomass towards biohydrogen and biogas production? // Sustainability. 2020. Vol. 12, no. 21. P. 8935. DOI: 10.3390/su12218935.

14. Bauer A., Lizasoain J., Theuretzbacher F., Agger J.W., Rincón M., Menardo S., et al. Steam explosion pretreatment for enhancing biogas production of late harvested hay // Bioresource Technology. 2014. Vol. 166. P. 403–410. DOI: 10.1016/j.biortech.2014.05.025.

15. Lizasoain J., Rincón M., Theuretzbacher F., Enguídanos R., Nielsen P.J., Potthast A., et al. Biogas production from reed biomass: effect of pretreatment using different steam explosion conditions // Biomass and Bioenergy. 2016. Vol. 95. P. 84-91. DOI: 10.1016/j.biombioe.2016.09.021.

16. Madadi M., Bakr M.M.A., Song G., Sun C., Sun F., Hao Z., et al. Co-production of levulinic acid and lignin adsorbent from aspen wood with combination of liquid hot water and green-liquor pretreatments // Journal of Cleaner Production. 2022. Vol. 366. P. 132817. DOI: 10.1016/j.jclepro.2022.132817.

17. Jiang D., Ge X., Zhang Q., Li Y. Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production // Bioresource Technology. 2016. Vol. 216. P. 60–68. DOI: 10.1016/j.biortech.2016.05.052.

18. Zieliński M., Kisielewska M., Dudek M., Rusanowska P., Nowicka A., Krzemieniewski M., et al. Comparison of microwave thermohydrolysis and liquid hot water pretreatment of energy crop Sida hermaphrodita for enhanced methane production // Biomass and Bioenergy. 2019. Vol. 128. P. 105324. DOI: 10.1016/j.biombioe.2019.105324.

19. Theuretzbacher F., Lizasoain J., Lefever C., Saylor M.K., Enguidanos R., Weran N., et al. Steam explosion pretreatment of wheat straw to improve methane yields: Investigation of the degradation kinetics of structural compounds during anaerobic digestion // Bioresource Technology. 2015. Vol. 179. P. 299–305. DOI: 10.1016/j.biortech.2014.12.008.

20. Chen H.-Z., Liu Z.-H. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products // Biotechnology Journal. 2015. Vol. 10, no. 6. P. 866–885. DOI: 10.1002/biot.201400705.

21. Larnaudie V., Ferrari M.D., Lareo C. Life cycle assessment of ethanol produced in a biorefinery from liquid hot water pretreated switchgrass // Renewable Energy. 2021. Vol. 176. P. 606–616. DOI: 10.1016/j.renene.2021.05.094.

22. Jiang W., Chang S., Li H., Oleskowicz-Popiel P., Xu J. Liquid hot water pretreatment on different parts of cotton stalk to facilitate ethanol production // Bioresource Technology. 2015. Vol. 176. P. 175–180. DOI: 10.1016/j.biortech.2014.11.023.

23. Zhao J., Xu Y., Wang W., Griffin J., Wang D. Conversion of liquid hot water, acid and alkali pretreated industrial hemp biomasses to bioethanol // Bioresource Technology. 2020. Vol. 309. P. 123383. DOI: 10.1016/j.biortech.2020.123383.

24. Toscan A., Fontana R.C., Camassola M., Dillon A.J.P. Comparison of liquid hot water and saturated steam pretreatments to evaluate the enzymatic hydrolysis yield of elephant grass // Biomass Conversion and Biorefinery. 2024. Vol. 14. P. 8057–8070. DOI: 10.1007/s13399-022-02939-7.

25. Kim J.-H., Choi J.-H., Kim J.-C., Jang S.-K., Kwak H.W., Koo B., et al. Production of succinic acid from liquid hot water hydrolysate derived from Quercus mongolica // Biomass and Bioenergy. 2021. Vol. 150. P. 106103. DOI: 10.1016/j.biombioe.2021.106103.

26. Sahay S. Impact of pretreatment technologies for biomass to biofuel production // Substrate analysis for effective biofuels production / eds N. Srivastava, M. Srivastava, P.K. Mishra, V.K. Gupta. Singapore: Springer, 2020. P. 173–216. DOI: 10.1007/978-981-32-9607-7_7.

27. Ko J.K., Kim Y., Ximenes E., Ladisch M.R. Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose // Biotechnology and Bioengineering. 2015. Vol. 112, no. 2. P. 252–262. DOI: 10.1002/bit.25349.

28. Wang W., Zhu Y., Du J., Yang Y., Jin Y. Influence of lignin addition on the enzymatic digestibility of pretreated lignocellulosic biomasses // Bioresource Technology. 2015. Vol. 181. P. 7–12. DOI: 10.1016/j.biortech.2015.01.026.

29. Shang G., Zhang C., Wang F., Qiu L., Guo X., Xu F. Liquid hot water pretreatment to enhance the anaerobic digestion of wheat straw – effects of temperature and retention time // Environmental Science and Pollution Research. 2019. Vol. 26. P. 29424–29434. DOI: 10.1007/s11356-019-06111-z.

30. Varongchayakul S., Songkasiri W., Chaiprasert P. Optimization of cassava pulp pretreatment by liquid hot water for biomethane production // Bioenergy Research. 2021. Vol. 14. P. 1312–1327. DOI: 10.1007/s12155-020-10238-0.

31. Antonopoulou G., Papadopoulou K., Alexandropoulou M., Lyberatos G. Liquid hot water treatment of woody biomass at different temperatures: the effect on composition and energy production in the form of gaseous biofuels // Sustainable Chemistry and Pharmacy. 2024. Vol. 38. P. 101485. DOI: 10.1016/j.scp.2024.101485.

32. Mosier N., Hendrickson R., Ho N., Sedlak M., Ladisch M.R. Optimization of pH controlled liquid hot water pretreatment of corn stover // Bioresource Technology. 2005. Vol. 96, no. 18. P. 1986–1993. DOI: 10.1016/j.biortech.2005.01.013.

33. Kim Y., Hendrickson R., Mosier N.S., Ladisch M.R. Liquid hot water pretreatment of cellulosic biomass // Biofuels. Methods and Protocols / ed. J.R. Mielenz. Totowa: Humana, 2009. P. 93–102. DOI: 10.1007/978-1-60761-214-8_7.

34. Li H.-Q., Jiang W., Jia J.-X., Xu J. pH pre-corrected liquid hot water pretreatment on corn stover with high hemicellulose recovery and low inhibitors formation // Bioresource Technology. 2014. Vol. 153. P. 292–299. DOI: 10.1016/j.biortech.2013.11.089.

35. Kim Y., Mosier N.S., Ladisch M.R. Enzymatic digestion of liquid hot water pretreated hybrid poplar // Biotechnology Progress. 2009. Vol. 25, no. 2. P. 340–348. DOI: 10.1002/btpr.137.

36. Vallejos M.E., Zambon M.D., Area M.C., da Silva Curvelo A.A. Low liquid-solid ratio (LSR) hot water pretreatment of sugarcane bagasse // Green Chemistry. 2012. Vol. 14, no. 7. P. 1982–1989. DOI: 10.1039/C2GC35397K.

37. Serna-Loaiza S., Dias M., Daza-Serna L., de Carvalho C.C.C.R., Friedl A. Integral analysis of liquid-hot-water pretreatment of wheat straw: evaluation of the production of sugars, degradation products, and lignin // Sustainability. 2021. Vol. 14, no. 1. P. 362. DOI: 10.3390/su14010362.

38. Kim Y., Kreke T., Mosier N.S., Ladisch M.R. Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips // Biotechnology and Bioengineering. 2014. Vol. 111, no. 2. P. 254–263. DOI: 10.1002/bit.25009.

39. Yu Q., Zhuang X., Yuan Z., Wang Q., Qi W., Wang W., et al. Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose // Bioresource Technology. 2010. Vol. 101, no. 13. P. 4895–4899. DOI: 10.1016/j.biortech.2009.11.051.

40. Ladeira Ázar R.I.S., Bordignon-Junior S.E., Laufer C., Specht J., Ferrier D., Kim D. Effect of lignin content on cellulolytic saccharification of liquid hot water pretreated sugarcane bagasse // Molecules. 2020. Vol. 25, no. 3. P. 623. DOI: 10.3390/molecules25030623.

41. Van Walsum G.P., Allen S.G., Spencer M.J., Laser M.S., Antal Jr. M.J., Lynd L.R. Conversion of lignocellulosics pretreated with liquid hot water to ethanol // Conversion of Lignocellulosics Pretreated with Liquid Hot Water to Ethanol: Seventeenth Symposium on Biotechnology for Fuels and Chemicals. Totowa: Humana Press, 1996. P. 157–170. DOI: 10.1007/978-1-4612-0223-3_14.

42. Machineni L. Lignocellulosic biofuel production : review of alternatives // Biomass Conversion and Biorefinery. 2020. Vol. 10. P. 779–791. DOI: 10.1007/s13399-019-00445-x.

43. Ali N., Zhang Q., Liu Z.-Y., Li F.-L., Lu M., Fang X.-C. Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products // Applied Microbiology and Biotechnology. 2020. Vol. 104. P. 455–473. DOI: 10.1007/s00253-019-10158-w.

44. Alvira P., Tomas-Pejo E., Ballesteros M., Negro M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis : a review // Bioresource Technology. 2010. Vol. 101, no. 13. P. 4851–4861. DOI: 10.1016/j.biortech.2009.11.093.

45. Chen H. Lignocellulose biorefinery engineering: principles and applications. Sawston: Woodhead Publishing, 2015. 274 p.

46. Haldar D., Purkait M.K. Lignocellulosic conversion into value-added products : a review // Process Biochemistry. 2020. Vol. 89. P. 110–133. DOI: 10.1016/j.procbio.2019.10.001.

47. Volynets B., Ein-Mozaffari F., Dahman Y. Biomass processing into ethanol: pretreatment, enzymatic hydrolysis, fermentation, rheology, and mixing // Green Processing and Synthesis. 2017. Vol. 6, no. 1. P. 1–22. DOI: 10.1515/gps-2016-0017.

48. Smichi N., Messaoudi Y., Allaf K., Gargouri M. Steam explosion (SE) and instant controlled pressure drop (DIC) as thermo-hydro-mechanical pretreatment methods for bioethanol production // Bioprocess and Biosystems Engineering. 2020. Vol. 43. P. 945–957. DOI: 10.1007/s00449-020-02297-6.

49. Liu Z.-H., Chen H.-Z. Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility // Bioresource Technology. 2015. Vol. 193. P. 345–356. DOI: 10.1016/j.biortech.2015.06.114.

50. Sun X.F., Xu F., Sun R.C., Geng Z.C., Fowler P., Baird M.S. Characteristics of degraded hemicellulosic polymers obtained from steam exploded wheat straw // Carbohydrate Polymers. 2005. Vol. 60, no. 1. P. 15–26. DOI: 10.1016/j.carbpol.2004.11.012.

51. Chen H., Sui W. Steam explosion as a hydrothermal pretreatment in the biorefinery concept // Hydrothermal processing in biorefineries / eds H.A. Ruiz, M.H. Thomsen, H.L. Trajano. Cham: Springer, 2017. P. 317–332. DOI: 10.1007/978-3-319-56457-9_12.

52. Wojtasz-Mucha J., Hasani M., Theliander H. Hydrothermal pretreatment of wood by mild steam explosion and hot water extraction // Bioresource Technology. 2017. Vol. 241. P. 120–126. DOI: 10.1016/j.biortech.2017.05.061.

53. Adapa P., Tabil L., Schoenau G. Grinding performance and physical properties of non-treated and steam exploded barley, canola, oat and wheat straw // Biomass and Bioenergy. 2011. Vol. 35, no. 1. P. 549–561. DOI: 10.1016/j.biombioe.2010.10.004.

54. Capolupo L., Faraco V. Green methods of lignocellulose pretreatment for biorefinery development // Applied Microbiology and Biotechnology. 2016. Vol. 100. P. 9451–9467. DOI: 10.1007/s00253-016-7884-y.

55. Negro M.J., Álvarez C., Doménech P., Iglesias R., Ballesteros I. Sugars production from municipal forestry and greening wastes pretreated by an integrated steam explosion-based process // Energies. 2020. Vol. 13, no. 17. P. 4432. DOI: 10.3390/en13174432.

56. Marques F.P., Silva L.M.A., Lomonaco D., de Freitas Rosa M., Leitão R.C. Steam explosion pretreatment to obtain eco-friendly building blocks from oil palm mesocarp fiber // Industrial Crops and Products. 2020. Vol. 143. P. 111907. DOI: 10.1016/j.indcrop.2019.111907.

57. Cantarella M., Cantarella L., Gallifuoco A., Spera A., Alfani F. Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF // Biotechnology Progress. 2004. Vol. 20, no. 1. P. 200–206. DOI: 10.1021/bp0257978.

58. Morales P., Gentina J.C., Aroca G., Mussatto S.I. Development of an acetic acid tolerant Spathaspora passalidarum strain through evolutionary engineering with resistance to inhibitors compounds of autohydrolysate of Eucalyptus globulus // Industrial crops and Products. 2017. Vol. 106. P. 5–11. DOI: 10.1016/j.indcrop.2016.12.023.

59. Sarker T.R., Pattnaik F., Nanda S., Dalai A.K., Meda V., Naik S. Hydrothermal pretreatment technologies for lignocellulosic biomass : a review of steam explosion and subcritical water hydrolysis // Chemosphere. 2021. Vol. 284. P. 131372. DOI: 10.1016/j.chemosphere.2021.131372.

60. Jacquet N., Maniet G., Vanderghem C., Delvigne F., Richel A. Application of steam explosion as pretreatment on lignocellulosic material: a review // Industrial & Engineering Chemistry Research. 2015. Vol. 54, no. 10. P. 2593–2598. DOI: 10.1021/ie503151g.

61. Alvira P., Negro M.J., Ballesteros I., González A., Ballesteros M. Steam explosion for wheat straw pretreatment for sugars production // Bioethanol. 2016. Vol. 2, no. 1. P. 66–75. DOI: 10.1515/bioeth-2016-0003.

62. Horn S.J., Nguyen Q.D., Westereng B., Nilsen P.J., Eijsink V.G.H. Screening of steam explosion conditions for glucose production from non-impregnated wheat straw // Biomass and Bioenergy. 2011. Vol. 35, no. 12. P. 4879–4886. DOI: 10.1016/j.biombioe.2011.10.013.

63. Baral N.R., Shah A. Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover // Bioresource Technology. 2017. Vol. 232. P. 331–343. DOI: 10.1016/j.biortech.2017.02.068.

64. Singh J., Suhag M., Dhaka A. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods : a review // Carbohydrate Polymers. 2015. Vol. 117. P. 624–631. DOI: 10.1016/j.carbpol.2014.10.012.

65. Kumar A., Anushree, Kumar J., Bhaskar T. Utilization of lignin: a sustainable and eco-friendly approach // Journal of the Energy Institute. 2020. Vol. 93, no. 1. P. 235–271. DOI: 10.1016/j.joei.2019.03.005.

66. Vidal Jr. B.C. Dien B.S., Ting K.C., Singh V. Influence of feedstock particle size on lignocellulose conversion – a review // Applied Biochemistry and Biotechnology. 2011. Vol. 164. P. 1405–1421. DOI: 10.1007/s12010-011-9221-3.

67. Hoang A.T., Nguyen, X.P., Duong X.Q., Ağbulut Ü., Len C., Nguyen P.Q.P., et al. Steam explosion as sustainable biomass pretreatment technique for biofuel production: characteristics and challenges // Bioresource Technology. 2023. Vol. 385. P. 129398. DOI: 10.1016/j.biortech.2023.129398.

68. DeMartini J.D., Foston M., Meng X., Jung S., Kumar R., Ragauskas A.J., et al. How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars // Biotechnology for Biofuels. 2015. Vol. 8. P. 209. DOI: 10.1186/s13068-015-0373-1.

69. Liu Z.-H., Qin L., Pang F., Jin M.-J., Li B.-Z., Kang Y., et al. Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover // Industrial Crops and Products. 2013. Vol. 44. P. 176–184. DOI: 10.1016/j.indcrop.2012.11.009.

70. Pitarelo A.P., da Silva T.A., Peralta-Zamora P.G., Ramos L.P. Effect of moisture content in the steam treatment and enzymatic hydrolysis of sugarcane bagasse // Química Nova. 2012. Vol. 35, no. 8. P. 1502–1509. DOI: 10.1590/S0100-40422012000800003.

71. Yu Z., Zhang B., Yu F., Xu G., Song A. A real explosion: the requirement of steam explosion pretreatment // Bioresource Technology. 2012. Vol. 121. P. 335–341. DOI: 10.1016/j.biortech.2012.06.055.


Рецензия

Для цитирования:


Гладышева Е.К. Предварительная гидротермическая обработка и паровой взрыв целлюлозосодержащего сырья для последующей биотехнологической трансформации: обзор. Известия вузов. Прикладная химия и биотехнология. 2024;14(2):184-194. https://doi.org/10.21285/achb.919. EDN: IDUAXB

For citation:


Gladysheva E.K. Preliminary hydrothermal treatment and steam explosion of cellulosic feedstock for the subsequent biotechnological transformation: A review. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(2):184-194. (In Russ.) https://doi.org/10.21285/achb.919. EDN: IDUAXB

Просмотров: 231


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)