Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

ОПРЕДЕЛЕНИЕ САКСИТОКСИНА МЕТОДОМ ВЭЖХ-МС С ПРЕДКОЛОНОЧНОЙ ДЕРИВАТИЗАЦИЕЙ 2,4-ДИНИТРОФЕНИЛГИДРАЗИНОM

https://doi.org/.org/10.21285/2227-2925-2018-8-3-25-32

Полный текст:

Аннотация

В настоящей работе предложен оригинальный метод определения сакситоксина (STX) основанный на его выделении из цианобактериальной биомассы путем экстракции 0,05 М уксусной кислотой, дериватизации 2,4-динитрофенилгидразином (DNPH) и последующем анализе производного методом ВЭЖХ-МС. Дериватизация проводилась в смеси ацетонитрил-трифторуксусная кислота (98,5:1,5 об./об.) при 65 °С; период полупревращения составляет ~ 3,6 ч. Разработанный метод был применен для анализа природных цианобактериальных образцов, а также культивированного штамма Nostoc Pruniforme. Детектирование гидразона сакситоксина проводилось путем измерения полного ионного тока и последующего экстрагирования ионного тока при m/z 462,15 ± 0,1. Дериватизация 2,4-динитро-фенигидразином осложнена образованием двух стереоизомеров, E и Z, которые дают два отдельных пика при ВЭЖХ. Выполненные нами квантово-химические расчеты показывают, что в случае сакситоксина образуется только один Z-изомер вследствие стерического фактора и, следовательно, только один хроматографический пик гидразона сакситоксина наблюдается на хроматограмме. Для предложенного метода получены следующие метрологические характеристики: предел определения - 20 нг/г (сухая биомасса), повторяемость - 4%, внутрилабораторная прецезионность - ±7%.

Об авторах

И. Н. Зубков
Лимнологический институт, Сибирское отделение Российской академии наук
Россия


А. В. Кузьмин
Лимнологический институт, Сибирское отделение Российской академии наук; Иркутский институт химии им. А.Е. Фаворского, Сибирское отделение Российской академии наук
Россия


И. В. Тихонова
Лимнологический институт, Сибирское отделение Российской академии наук
Россия


О. И. Белых
Лимнологический институт, Сибирское отделение Российской академии наук
Россия


В. И. Смирнов
Иркутский институт химии им. А.Е. Фаворского, Сибирское отделение Российской академии наук
Россия


А. В. Иванов
Иркутский институт химии им. А.Е. Фаворского, Сибирское отделение Российской академии наук
Россия


В. А. Шагун
Иркутский институт химии им. А.Е. Фаворского, Сибирское отделение Российской академии наук
Россия


М. А. Грачев
Лимнологический институт, Сибирское отделение Российской академии наук
Россия


Г. А. Федорова
Лимнологический институт, Сибирское отделение Российской академии наук; Восточно-Сибирский филиал Российского государственного университета правосудия
Россия


Список литературы

1. Wiese M, D’Agostino P.M., Mihali T.C., Moffitt M.C., Neilan B.A. Neurotoxic alkaloids: saxitoxin and its analogs. Marine Drugs. 2010, vol. 8, pp. 2185-2211. DOI:10.3390/md8072185.

2. Isbister G.K., Kiernan M.C. Neurotoxic marine poisoning. Lancet Neurol. 2005, vol. 4, pp. 219-228. DOI:10.1016/S1474-4422(05)70041-7.

3. Grattan L.M., Holobaugh S., Morris J.G. Harmful algal blooms and public health. Harmful algae. 2016, vol. 57, pp. 2-8. DOI:10.1016/j.hal. 2016.05.003.

4. Kaushik R., Balasubramanian R. Methods and approaches used for detection of cyanotoxins in environmental samples: A review. Crit Rev Environ Sci Technol. 2013, vol. 43, pp. 1349-1383. DOI:10.1080/10643389.2011.644224.

5. Rodrıguez I., Vieytes M.R., Alfonso A. Analytical challenges for regulated marine toxins. Detection methods. Curr Opin Food Sci. 2017, vol. 18, pp. 29-36. DOI:10.1016/j.cofs.2017.10.008.

6. [AOAC] Association of official agricultural chemists. Quantitative determination of paralytic shellfish poisoning toxins in shellfish using pre-chromatographic oxidation and liquid chromatography with fluorescence detection. AOAC Official Method 2005.06.

7. [AOAC] Association of official agricultural chemists. Paralytic shellfish toxins in mussels, clams, oysters, and scallops. post-column oxidation (PCOX) method. AOAC Official Method 2011.02.

8. Boundy M.J., Selwooda A.I., Harwooda D.T., McNabba P.S., Turner A.D. Development of a sensitive and selective liquid chromatography-mass spectrometry method for high throughput analysis of paralytic shellfish toxins using graphitised carbon solid phase extraction. J Chromatogr A. 2015, vol. 1387, pp. 1-12. DOI:10.1016/j.chroma.2015.01.086.

9. Bragg W.A., Lemirea S.W., Colemanb R.M., Hamelina E.I., Johnson R.C. Detection of human exposure to saxitoxin and neosaxitoxin in urine by online-solid phase extraction-liquid chromatography-tandem mass spectrometry. Toxicon. 2015, vol. 99, pp. 118-124. DOI:10.1016/j.toxi-con.2015.03.017.

10. Xu X., Huang B., Xu J., Cai Z., Zhang J., Chen Q., Han J. Fast and quantitative determi-nation of saxitoxin and neosaxitoxin in urine by ultra-performance liquid chromatography-triple quadrupole mass spectrometry based on the cleanup of solid phase extraction with hydrophilic interaction mechanism. J Chromatogr B. 2018, vol. 1072, pp. 267-272. DOI:10.1016/j.jch-romb.2017.11.032.

11. Schantz E.J., Ghazarossian V.E., Schnoes H.K., Strong F.M., Springer J.P., Pezzanite J.O., Clardy J. Structure of saxitoxin. J Am Chem Soc. 1975, vol. 97, no. 5, pp. 1238-1239. DOI:10.1021/ja00838a045.

12. Strichartz G. Structural determinants of the affinity of saxitoxin for neuronal sodium channels. J Gen Physiol. 1984, vol. 84, pp. 281-305.

13. Brady O.L., Elsmie G.V. The use of 2:4-dinitrophenylhydrazine as a reagent for aldehydes and ketones. Analyst. 1926, vol. 51(599), pp. 77-78. DOI:10.1039/AN9265100077.

14. Nishikawa N., Sakai T. Derivatization and chromatographic determination of aldehydes in gaseous and air samples. J Chromatogr A. 1995, vol. 710, pp. 159-165. DOI:10.1016/0021-9673(94) 01006-Z.

15. Uchiyama S., Inaba Y., Kunugita N. Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine and their subsequent determination by high-performance liquid chromatography. J Chromatogr B. 2011, vol. 879, pp. 1282-1289. DOI:10.1016/j.jchromb.2010.09.028.

16. Kadam S.S., Tambe S.T., Grampurohit N.D., Gaikwad D.D. Review article on: chemical importance of Brady’s reagent. IJRPC. 2012, vol. 2, pp. 1086-1092.

17. Szulejko J.E., Kim K. Derivatization techniques for determination of carbonyls in air. Trends in Analytical Chemistry. 2015, vol. 64, pp. 29-41. DOI:10.1016/j.trac.2014.08.010.

18. Dionex Application Note 97. Determination of carbonyl compounds by reversed-phase high-performance liquid chromatography. 2001.

19. Kim, In S., Nguyen, Giang-Huong, Kim, Sung-Youn, Lee, Jin-Wook, Yu, Hye-Weon. Evaluation of Methods for Cyanobacterial Cell Lysis and Toxin (Microcystin-LR) Extraction Using Chromatographic and Mass Spectrometric Analyses. Environ. Eng. Res. 2009, vol. 14, pp. 250-254.


Для цитирования:


Зубков И.Н., Кузьмин А.В., Тихонова И.В., Белых О.И., Смирнов В.И., Иванов А.В., Шагун В.А., Грачев М.А., Федорова Г.А. ОПРЕДЕЛЕНИЕ САКСИТОКСИНА МЕТОДОМ ВЭЖХ-МС С ПРЕДКОЛОНОЧНОЙ ДЕРИВАТИЗАЦИЕЙ 2,4-ДИНИТРОФЕНИЛГИДРАЗИНОM. Известия вузов. Прикладная химия и биотехнология. 2018;8(3):25-32. https://doi.org/.org/10.21285/2227-2925-2018-8-3-25-32

For citation:


Zubkov I.N., Kuzmin A.V., Tikhonova I.V., Belykh O.I., Smirnov V.I., Ivanov A.V., Shagun V.A., Grachev M.A., Fedorova G.A. A METHOD FOR DETERMINATION OF SAXITOXINS USING HPLC-MS WITH 2,4-DINITROPHENYLHYDRAZINE PRECOLUMN DERIVATIZATION. Proceedings of Universities. Applied Chemistry and Biotechnology. 2018;8(3):25-32. (In Russ.) https://doi.org/.org/10.21285/2227-2925-2018-8-3-25-32

Просмотров: 19


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)