Оценка стабильности фикобилипротеинов оптическим методом при их хранении в водно-спиртовом растворе
https://doi.org/10.21285/achb.927
EDN: TQPEED
Аннотация
Целью работы являлась оценка стабильности пигментов, относящихся к группе фикобилипротеинов, выделенных из биомассы цианобактерии Spirulina (Arthrospira) platensis и красной микроводоросли Porphyridium purpureum. Водные экстракты фикобилипротеинов получали после двукратного замораживания сырой биомассы Arthrospira platensis и Porphyridium purpureum, экстракцию проводили фосфатным буфером (0,05 М, рН = 7) на холоде (5 °С) в течение 24 часов. К полученным экстрактам добавляли 96%-й этанол до его концентрации в растворе 20%. Хранение водно-спиртовых экстрактов фикобилипротеинов осуществляли 3 месяца, контроль концентраций пигментов проводили оптическим методом. Наибольшую стабильность при хранении продемонстрировал пигмент аллофикоцианин. Самая высокая скорость деструкции фикобилипротеинов наблюдалась при их хранении на свету при комнатной температуре. Скорость деградации пигментов в этих условиях в 9 и в 80 раз (для В-фикоэритрина и С-фикоцианина соответственно) превышала аналогичные показатели при их хранении в темноте и на холоде. Наименее стойким, по сравнению с другими исследованными фикобилипротеинами, оказался С-фикоцианин. Скорость его деградации при всех вариантах хранения была от 5 до 10 раз выше, чем В-фикоэритрина в аналогичных условиях. Обязательным условием сохранения С-фикоцианина и В-фикоэритрина в водно-спиртовых растворах являлось отсутствие света, а в случае С-фикоцианина и пониженная температура. Допустимо также хранение В-фикоэритрина в темноте при комнатной температуре. Такой режим может обеспечить сохранность до 86% пигментов в водно-спиртовых растворах на протяжении 25–30 суток.
Ключевые слова
Об авторах
И. Н. ГудвиловичРоссия
Гудвилович Ирина Николаевна - к.б.н., старший научный сотрудник.
299011, Севастополь, пр. Нахимова, 2
А. Б. Боровков
Россия
Боровков Андрей Борисович - к.б.н., ведущий научный сотрудник.
299011, Севастополь, пр. Нахимова, 2
Список литературы
1. Manirafasha E., Ndikubwimana T., Zeng X., Lu Y., Jing K. Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent // Biochemical Engineering Journal. 2016. Vol. 109. P. 282–296. DOI: 10.1016/J.BEJ.2016.01.025.
2. Hsieh-Lo M., Castillo G., Ochoa-Becerra M.A., Mojica L. Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability // Algal Research. 2019. Vol. 42. P. 101600. DOI: 10.1016/j.ALGAL.2019.101600.
3. Dagnino-Leone J., Figueroa C.P., Castañeda M.L., Youlton A.D., Vallejos-Almirall A., Agurto-Muñoz A., et al. Phycobiliproteins: structural aspects, functional characteristics, and biotechnological perspectives // Computational and Structural Biotechnology Journal. 2022. Vol. 20. P. 1506–1527. DOI: 10.1016/j.csbj.2022.02.016.
4. Kovaleski G., Kholany M., Dias L.M.S., Correia S.F.H., Ferreira R.A.S., Coutinho J.A.P., Ventura S.P.M. Extraction and purification of phycobiliproteins from algae and their applications // Frontiers in Chemistry. 2022. Vol. 10. P. 1065355. DOI: 10.3389/fchem.2022.1065355.
5. Stadnichuk I.N., Tropin I.V. Phycobiliproteins: structure, functions and biotechnological applications // Applied Biochemistry and Microbiology. 2017. Vol. 53. P. 1–10. DOI: 10.1134/S0003683817010185.
6. Pagels F., Guedes A.C., Amaro H.M., Kijjoa A., Vasconcelos V. Phycobiliproteins from cyanobacteria: chemistry and biotechnological applications // Biotechnology Advances. 2019. Vol. 37, no. 3. P. 422–443. DOI: 10.1016/j.biotechadv.2019.02.010.
7. Nath P.C., Bandyopadhyay T.K., Mahata N., Tiwari O.N., Bobby M.N., Indira M., et al. C-phycoerythrin production from Anabaena sp. BTA 903: optimization, production kinetics, thermodynamic and stability analysis // Biomass Conversion and Biorefinery. 2024. Vol. 14. P. 19739–19751. DOI: 10.1007/s13399-023-04109-9.
8. Spirulina platensis (Arthrospira): physiology, cellbiology and biotechnology / ed. A. Vonshak. London: Taylor & Francis, 1997. 235 p.
9. Nowruzi B., Konur O., Anvar S.A.A. The stability of the phycobiliproteins in the adverse environmental conditions relevant to the food storage // Food and Bioprocess Technology. 2022. Vol. 15. P. 2646–2663. DOI: 10.1007/s11947-022-02855-8.
10. Wu H.-L., Wang G.-H., Xiang W.-Z., Li T., He H. Stability and antioxidant activity of food-grade phycocyanin isolated from Spirulina platensis // International Journal of Food Properties. 2016. Vol. 19, no. 10. P. 2349–2362. DOI: 10.1080/10942912.2015.1038564.
11. Pereira T., Barroso S., Mendes S., Gil M.M. Stability, kinetics and application study of phycobiliprotein pigments extracted from red algae Gracilaria gracilis // Journal of Food Science. 2020. Vol. 85, no. 10. P. 3400–3405. DOI: 10.1111/1750-3841.15422.
12. Marraskuranto E., Raharjo T.J., Kasiamdari R.S. Nuringtyas T.R. Color stability of phycoerythrin crude extract (PECE) from Rhodomonas salina toward physicochemical factors //Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology. 2019. Vol. 14, no. 1. P. 21–31. DOI: 10.15578/squalen.v14i1.379.
13. Adjali A., Clarot I., Chen Z., Marchioni E., Boudier A. Physicochemical degradation of phycocyanin and means to improve its stability: a short review // Journal of Pharmaceutical Analysis. 2022. Vol. 12, no. 3. P. 406–414. DOI: 10.1016/j.jpha.2021.12.005.
14. Shkolnikov Lozober H., Okun Z., Parvari G., Shpigelman A. The effect of storage and pasteurization (thermal and high-pressure) conditions on the stability of phycocyanobilin and phycobiliproteins // Antioxidants. 2023. Vol. 12, no. 3. P. 568. DOI: 10.3390/antiox12030568.
15. De Morais M.G., da Silva Vaz B., de Morais E.G., Vieira Costa J.A. Biological effects of spirulina (Arthrospira) biopolymers and biomass in the development of nanostructured scaffolds // BioMed Research International. 2014. Vol. 2014, no. 1. P. 1–9. DOI: 10.1155/2014/762705.
16. Береговая Н.М. Особенности хранения водного экстракта R-фикоэритрина // Экология моря. 2010. Т. 81. С. 13–16. EDN: ULDZYV.
17. Береговая Н.М., Гудвилович И.Н. Хранение водно-спиртового экстракта С-фикоцианина, полученного из микроводоросли Spirulina platensis // Экология моря. 2010. Т. 81. С. 17–22. EDN: ULDZZF.
18. Тренкеншу Р.П., Терсков И.А., Сидько Ф.Я. Плотные культуры морских микроводорослей // Известия Сибирского отделения Академии наук СССР. Серия биологических наук. 1981. Т. 5. N 1. С. 75–82.
19. Стадничук И.Н. Фикобилипротеины. М.: Мир, 1990. 196 c.
20. Лось С.И. Биохимические основы получения фикоэритрина из морских водорослей // Альгология. 2008. Т. 18. N 4. С. 375–385. EDN: JVOIFR.
21. Mishra S.K., Shrivastav A., Mishra S. Effect of preservatives for food grade C-PC from Spirulina platensis // Process Biochemistry. 2008. Vol. 43, no. 4. P. 339–345. DOI: 10.1016/j.procbio.2007.12.012.
Рецензия
Для цитирования:
Гудвилович И.Н., Боровков А.Б. Оценка стабильности фикобилипротеинов оптическим методом при их хранении в водно-спиртовом растворе. Известия вузов. Прикладная химия и биотехнология. 2024;14(3):362-370. https://doi.org/10.21285/achb.927. EDN: TQPEED
For citation:
Gudvilovich I.N., Borovkov A.B. Storage stability of phycobiliproteins in a hydroalcoholic solution evaluated by an optical method. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(3):362-370. (In Russ.) https://doi.org/10.21285/achb.927. EDN: TQPEED