Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

Ферментативный гидролиз высококонцентрированных субстратов, полученных из мискантуса гигантского

https://doi.org/10.21285/achb.933

EDN: YXAMLK

Аннотация

В работе впервые исследуется ферментативный гидролиз четырех видов субстратов, полученных из мискантуса гигантского сорта КАМИС российской селекции, с помощью авторских методов химической предварительной обработки, проводимой при атмосферном давлении с использованием разбавленных растворов HNO3 и NaОН. Одностадийная предварительная обработка мискантуса гигантского позволяет повысить содержание полисахаридов до 90,4–90,8%, а двустадийная обработка – до 98,3–99,4%. Результаты опытных данных ферментативного гидролиза четырех полученных субстратов в диапазоне начальных концентраций от 30 до 120 г/л аппроксимированы с использованием подходов фрактальной кинетики. Повышение начальных концентраций субстрата в указанном диапазоне приводит к повышению начальной скорости гидролиза в 2,8–3,3 раза и снижению выхода редуцирующих сахаров на 12,4–13,1%. Все четыре вида предобработки оказались чрезвычайно эффективны для мискантуса гигантского, так как обеспечили повышение реакционной способности к ферментативному гидролизу в 34–36 раз по сравнению с исходным сырьем. Сниженные выходы редуцирующих сахаров наблюдаются при ферментативном гидролизе продукта щелочной делигнификации мискантуса гигантского, что связано с устойчивостью мискантуса гигантского к обработке гидроксидом натрия. Повышение начальной концентрации субстратов от 60 до 90 г/л не приводит к существенному снижению выхода редуцирующих сахаров, поэтому ферментативный гидролиз высококонцентрированных субстратов может успешно использоваться для получения биотоплив и биохимикатов.

Об авторах

Е. А. Скиба
Институт проблем химико-энергетических технологий СО РАН
Россия

Скиба Екатерина Анатольевна - д.т.н., доцент, ведущий научный сотрудник.

659322, Бийск, ул. Социалистическая, 1



Е. И. Кащеева
Институт проблем химико-энергетических технологий СО РАН
Россия

Кащеева Екатерина Ивановна - к.т.н., старший научный сотрудник.

659322, Бийск, ул. Социалистическая, 1



В. Н. Золотухин
Институт проблем химико-энергетических технологий СО РАН
Россия

Золотухин Владимир Николаевич - к.т.н., старший научный сотрудник.

659322, Бийск, ул. Социалистическая, 1



А. А. Кухленко
АО «Специальное конструкторско-технологическое бюро “Катализатор”»
Россия

Кухленко Алексей Анатольевич - к.т.н., ведущий инженер.

630058, г. Новосибирск, ул. Тихая, 1



Список литературы

1. Wagh M.S., Sowjanya S., Nath P.C., Chakraborty A., Amrit R., Mishra B., et al. Valorisation of agro-industrial wastes: circular bioeconomy and biorefinery process – a sustainable symphony // Process Safety and Environmental Protection. 2024. Vol. 183. P. 708–725. DOI: 10.1016/j.psep.2024.01.055.

2. Mohammad R.E.A., Abdullahi S.S.A., Muhammed H.A., Musa H., Habibu S., Jagaba A.H., et al. Recent technical and non-technical biorefinery development barriers and potential solutions for a sustainable environment: a mini-review // Case Studies in Chemical and Environmental Engineering. 2024. Vol. 9. P. 100586. DOI: 10.1016/j.cscee.2023.100586.

3. Zabed H., Sahu J.N., Boyce A.N., Faruq G. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches // Renewable & Sustainable Energy Reviews. 2016. Vol. 66. P. 751–774. DOI: 10.1016/j.rser.2016.08.038.

4. Ha D.T., Kanarsky A.V., Kanarskaya Z.A., Shcherbakov A.V., Shcherbakova E.N., Pranovich A.V. Impact of cultivation conditions on xylanase production and growth in Paenibacillus mucilaginosus // Известия вузов. Прикладная химия и биотехнология. 2020. Т. 10. N 3. С. 459–469. DOI: 10.21285/2227-2925-2020-10-3-459-469. EDN: OMLQLP.

5. Хоанг К.К., Евстафьев С.Н. Оптимизация процесса обработки ультразвуком соломы пшеницы в среде хлорида 1-бутил-3-метилимидазолия // Известия вузов. Прикладная химия и биотехнология. 2017. Т. 7. N 2. С. 105–112. DOI: 10.21285/2227-2925-2017-7-2-105-112. EDN: YTPLTV.

6. Boakye-Boaten N.A., Kurkalova L., Xiu S., Shahbazi A. Techno-economic analysis for the biochemical conversion of Miscanthus x giganteus into bioethanol // Biomass and Bioenergy. 2017. Vol. 98. P. 85–94. DOI: 10.1016/j.biombioe.2017.01.017.

7. Zhang Y., Oates L.G., Serate J., Xie D., Pohlmann E., Bukhman Y.V., et al. Diverse lignocellulosic feedstocks can achieve high field-scale ethanol yields while providing flexibility for the biorefinery and landscape-level environmental benefits // Global Change Biology Bioenergy. 2018. Vol. 10, no. 11. P. 825-840. DOI: 10.1111/gcbb.12533.

8. Shavyrkina N.A., Budaeva V.V., Skiba E.A., Gismatulina Y.A., Sakovich G.V. Review of Current Prospects for Using Miscanthus-Based Polymers // Polymers. 2023. Vol. 15, no. 14. P. 3097. DOI: 10.3390/polym15143097.

9. Mironova G.F., Budaeva V.V., Skiba E.A., Gismatulina Y.A., Kashcheyeva E.I., Sakovich G.V. Recent advances in Miscanthus macromolecule conversion: a brief overview // International Journal of Molecular Sciences. 2023. Vol. 24, no. 16. P. 13001. DOI: 10.3390/ijms241613001.

10. Sebastian J., Rouissi T., Brar S.K. Miscanthus sp. – perennial lignocellulosic biomass as feedstock for greener fumaric acid bioproduction // Industrial Crops and Products. 2022. Vol. 175. P. 114248. DOI: 10.1016/j.indcrop.2021.114248.

11. Alvira P., Tomás-Pejó E., Ballesteros M., Negro M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review // Bioresource Technology. 2010. Vol. 101, no. 13. P. 4851–4861. DOI: 10.1016/j.biortech.2009.11.093.

12. Agrawal R., Satlewal A., Gaur R., Mathur A., Kumar R., Gupta R.P., et al. Pilot scale pretreatment of wheat straw and comparative evaluation of commercial enzyme preparations for biomass saccharification and fermentation // Biochemical Engineering Journal. 2015. Vol. 102. P. 54–61. DOI: 10.1016/j.bej.2015.02.018.

13. Kadhum H.J., Mahapatra D.M., Murthy G.S. A comparative account of glucose yields and bioethanol production from separate and simultaneous saccharification and fermentation processes at high solids loading with variable PEG concentration // Bioresource Technology. 2019. Vol. 283. P. 67–75. DOI: 10.1016/j.biortech.2019.03.060.

14. Sun C., Meng X., Sun F., Zhang J., Tu M., Chang J.-S., et al. Advances and perspectives on mass transfer and enzymatic hydrolysis in the enzyme-mediated lignocellulosic biorefinery: a review // Biotechnology Advances. 2023. Vol. 62. P. 108059. DOI: 10.1016/j.biotechadv.2022.108059.

15. Kurschner K., Hoffer A. Cellulose and cellulose derivative // Fresenius’ Journal of Analytical Chemistry. 1993. Vol. 92, no. 3. P. 145–154.

16. Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar // Analytical Chemistry. 1959. Vol. 31, no. 3. P. 426–428. DOI: 10.1021/ac60147a030.

17. Cochran W.G. The comparison of percentages in matched samples // Biometrika. 1950. Vol. 37, no. 3-4. P. 256–266. DOI: 10.1093/biomet/37.3-4.256.

18. Kashcheyeva E.I., Gismatulina Y.A., Budaeva V.V. Pretreatments of non-woody cellulosic feedstocks for bacterial cellulose synthesis // Polymers. 2019. Vol. 11, no. 10. P. 1645. DOI: 10.3390/polym11101645.

19. Kim J.S., Lee Y.Y., Kim T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass // Bioresource Technology. 2016. Vol. 199. P. 42–48. DOI: 10.1016/j.biortech.2015.08.085.

20. Chaudhary G., Chaudhary N., Saini S., Gupta Y., Vivekanand V., Panghal A. Assessment of pretreatment strategies for valorization of lignocellulosic biomass: path forwarding towards lignocellulosic biorefinery // Waste and Biomass Valorization. 2024. Vol. 15, no. 1. P. 1–36. DOI: 10.1007/s12649-023-02219-z.

21. Корчагина А.А., Гладышева Е.К., Будаева В.В., Скиба Е.А. Химический состав волокна и костры лубяных культур и продуктов их щелочной делигнификации // Известия вузов. Прикладная химия и биотехнология. 2023. Т. 13. N 4. С. 621–630. DOI: 10.21285/2227-2925-2023-13-4-621-630. EDN: KSVUTY.

22. Baksi S., Sarkar U., Villa R., Basu D., Sengupta D. Conversion of biomass to biofuels through sugar platform: a review of enzymatic hydrolysis highlighting the trade-off between product and substrate inhibitions //Sustainable Energy Technologies and Assessments. 2023. Vol. 55. P. 102963. DOI: 10.1016/j.seta.2022.102963.

23. Harun R., Danquah M.K. Enzymatic hydrolysis of microalgal biomass for bioethanol production // Chemical Engineering Journal. 2011. Vol. 168, no. 3. P. 1079–1084. DOI: 10.1016/j.cej.2011.01.088.

24. Pahari S., Kim J., Choi H.-K., Zhang M., Ji A., Yoo C.G., et al. Multiscale kinetic modeling of biomass fractionation in an experiment: understanding individual reaction mechanisms and cellulose degradation // Chemical Engineering Journal. 2023. Vol. 467. P. 143021. DOI: 10.1016/j.cej.2023.143021.

25. Xu F., Ding H. A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: contributions from the fractal and jamming (overcrowding) effects // Applied Catalysis A: General. 2007. Vol. 317, no. 1. P. 70–81. DOI: 10.1016/j.apcata.2006.10.014.

26. Wojtusik M., Zurita M., Villar J.C., Ladero M., Garcia-Ochoa F. Enzymatic saccharification of acid pretreated corn stover: empirical and fractal kinetic modelling // Bioresource Technology. 2016. Vol. 220 P. 110–116. DOI: 10.1016/j.biortech.2016.08.069.

27. Li H., Zhai R., Chen X., Jiang X., Li C., Deng Q., et al. Modeling and design of fed-batch strategies for achieving 255 g/L sugar concentration from high-solid enzymatic hydrolysis of pretreated corn stover // Chemical Engineering Journal. 2024. Vol. 486. P. 150268. DOI: 10.1016/j.cej.2024.150268.

28. Fockink D.H., Urio M.B., Sánchez J.H., Ramos L.P. Enzymatic hydrolysis of steamtreated sugarcane bagasse: effect of enzyme loading and substrate total solids on its fractal kinetic modeling and rheological properties // Energy & Fuels. 2017. Vol. 31, no. 6. P. 6211–6220. DOI: 10.1021/acs.energyfuels.7b00818.

29. Bansal P., Hall M., Realff M.J., Lee J.H., Bommarius A.S. Modeling cellulase kinetics on lignocellulosic substrates // Biotechnology Advances. 2009. Vol. 27, no. 6. P. 833–848. DOI: 10.1016/j.biotechadv.2009.06.005.

30. Wang Z., Feng H. Fractal kinetic analysis of the enzymatic saccharification of cellulose under different conditions // Bioresource Technology. 2010. Vol. 101, no. 20. P. 7995–8000. DOI: 10.1016/j.biortech.2010.05.056.

31. Lu M., Li J., Han L., Xiao W. High-solids enzymatic hydrolysis of ballmilled corn Stover with reduced slurry viscosity and improved sugar yields // Biotechnology for Biofuels. 2020. Vol. 13, no. 1. P. 77. DOI: 10.1186/s13068-020-01717-9.

32. Sinitsyn A.P., Sinitsyna O.A. Bioconversion of renewable plant biomass. Second-generation biofuels: raw materials, biomass pretreatment, enzymes, processes, and cost analysis // Biochemistry (Moscow). 2021. Vol. 86. P. S166–S195. DOI: 10.1134/S0006297921140121.


Рецензия

Для цитирования:


Скиба Е.А., Кащеева Е.И., Золотухин В.Н., Кухленко А.А. Ферментативный гидролиз высококонцентрированных субстратов, полученных из мискантуса гигантского. Известия вузов. Прикладная химия и биотехнология. 2024;14(3):394-405. https://doi.org/10.21285/achb.933. EDN: YXAMLK

For citation:


Skiba E.A., Kashcheyeva E.I., Zolotukhin V.N., Kukhlenko A.A. Enzymatic hydrolysis of highly concentrated substrates obtained from Miscanthus giganteus. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(3):394-405. (In Russ.) https://doi.org/10.21285/achb.933. EDN: YXAMLK

Просмотров: 129


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)