Synthesis and antimicrobial activity of functionally substituted 1,3-dioxacycloalkanes
https://doi.org/10.21285/achb.954
EDN: OTYUUO
Abstract
One of the directions in the development of organic chemistry is the synthesis of biologically active compounds, including those with bactericidal activity, based on available petrochemical raw materials. In order to expand the library of bioactive compounds containing a 1,3-dioxacyclane fragment, the synthesis of derivatives of 5-acyl-5-isopropyl-1,3-dioxane – 1-(5-isopropyl-1,3-dioxane-5-yl)ethanol and (5-isopropyl-1,3-dioxane-5-yl)ethyl phenyl carbamate was carried out. The effect of synthesized compounds containing a 1,3-dioxacyclane fragment on the growth of strains of gram-negative and gram-positive bacteria, lower fungi Candida albicans was studied. It was found that 2-methyl-2-ethyl-4-chloromethyl-1,3-dioxolane, containing a chloromethyl group, has an antimicrobial effect against gram-positive and gram-negative test cultures and weak antifungal activity (minimum inhibitory concentration is 100 μg/mL) against lower fungi Candida albicans. 1-(5-Isopropyl-1,3-dioxan-5-yl)ethanol exhibits antifungal activity (minimum inhibitory concentration is 2 μg/mL) and sharply reduces antimicrobial activity against Klebsiella pneumonia, Staphylococcus aureus, Enterobacter aerogenes (minimum inhibitory concentration is 100 μg/mL), in contrast to the structurally similar 2-methyl-2-ethyl-4-hydroxymethyl-1,3-dioxolane, which did not show similar properties. 5-Acyl-5-isopropyl-1,3-dioxane, containing a carbonyl group in its structure, showed antimicrobial activity (minimum inhibitory concentration is 25 μg/mL) against gram-negative test cultures, with the exception of Pseudomonas aeruginosa. Heterocycles (2-methyl-2-ethyl-4-chloromethyl-, 2-isobutyl-2,4-dimethyl-, 2-methyl-2-isobutyl-4-chloromethyl- and 2-methyl-2-isobutyl-4-hydroxymethyl-1,3-dioxolane) at concentrations up to 100 μg/mL did not inhibit the vital activity of the studied bacteria and lower fungi. The results obtained show the prospect of continuing the search for new antimicrobial and antifungal drugs of the series of 1,3-dioxacycloalkanes, the structure of which is fundamentally different from the known antibacterial drugs.
About the Authors
Yu. G. BorisovaRussian Federation
Yulianna G. Borisova, Cand. Sci. (Chemistry), Associate Professor
1, Kosmonavtov St., Ufa, 450064
A. K. Bulgakov
Russian Federation
Aidar K. Bulgakov, Dr. Sci. (Medicine), Professor, Professor
3, Lenin St., Ufa, 450008
N. S. Khusnutdinova
Russian Federation
Nailya S. Khusnutdinova, Assistant
3, Lenin St., Ufa, 450008
G. Z. Raskil’dina
Russian Federation
Gul’nara Z. Raskil’dina, Dr. Sci. (Chemistry), Professor, Professor
1, Kosmonavtov St., Ufa, 450064
S. S. Zlotskii
Russian Federation
Semen S. Zlotskii, Dr. Sci. (Chemistry), Professor, Head of the Department
1, Kosmonavtov St., Ufa, 450064
A. A. Bulgakova
Russian Federation
Aigul’ A. Bulgakova, Assistant
3, Lenin St., Ufa, 450008
S. A. Meshcheryakova
Russian Federation
Svetlana A. Meshcheryakova, Dr. Sci. (Pharmacy), Professor, Head of the Department
3, Lenin St., Ufa, 450008
R. M. Sultanova
Russian Federation
Rimma M. Sultanova, Dr. Sci. (Chemistry), Professor, Professor
1, Kosmonavtov St., Ufa, 450064
References
1. Maximov A.L., Nekhaev A.I., Ramazanov D.N. Ethers and acetals, promising petrochemicals from renewable sources. Petroleum Chemistry. 2015;55:1-21. DOI: 10.1134/S0965544115010107.
2. Oparina L.A., Kolyvanov N.A., Gusarova N.K., Saprygina V.N. Oxigenate fuel additives on the basis on renewable raw materials. Proceedings of Universities. Applied Chemistry and Biotechnology. 2018;8(1):19-34. (In Russian). DOI: 10.21285/2227-2925-2018-8-1-19-34. EDN: UQKXXE.
3. Ramazanov D.N., Nekhaev A.I., Samoilov V.O., Maximov A.L., Dzhumbe A. Egorova E.V. Reaction between glycerol and acetone in the presence of ethylene glycol. Petroleum Chemistry. 2015;55:140-145. DOI: 10.1134/S0965544115020152.
4. Varfolomeev S.D., Vol’eva V.B., Komissarova N.L., Kurkovskaya L.N., Malkova A.V., Ovsyannikova M.N., et al. New possibilities in the synthesis of fuel oxygenates from renewable sources. Russian Chemical Bulletin. 2019;68:717-724. DOI: 10.1007/s11172-019-2478-3.
5. Raskil’dina G.Z., Borisova Yu.G., Spirikhin L.V., Zlotsky S.S. Synthesis and physical and chemical characteristics of isomeric 2-, 4-substituted 1,3-dioxacycloalcanes. Chemistry and Technology of Organic Substances. 2019;1:4-12. (In Russian). DOI: 10.54468/25876724_2019_1_4. EDN: BZCKUO.
6. Kadiev K.M., Batov A.E., Dandaev A.U., Kadieva M.Kh., Oknina N.V., Maksimov A.L. Hydrogenation processing of oil wastes in the presence of ultrafine catalysts. Petroleum Chemistry. 2015;55:667-672. DOI: 10.1134/S0965544115080083.
7. Raskil’dina G.Z., Sultanova R.M., Zlotsky S.S. gem-Dichlorocyclopropanes and 1,3-dioxacyclanes: synthesis based on petroleum products and use in low-tonnage chemistry. Reviews and Advances in Chemistry. 2023;13:15-27. DOI: 10.1134/S2634827623700150.
8. Campos J., Saniger E., Marchal J.A., Aiello S., Suarez I., Boulaiz H., et al. New medium oxacyclic O,N-acetals and related open analogues: biological activities. Current Medicinal Chemistry. 2005:12(12):1423-1438. DOI: 10.2174/0929867054020927.
9. Iovinella I., Mandoli A., Luceri C., D’Ambrosio M., Caputo B., Cobre P., et al. Cyclic acetals as novel longlasting mosquito repellents. Journal of Agricultural and Food Chemistry. 2023;71(4):2152-2159. DOI: 10.1021/acs.jafc.2c05537.
10. Sedrik R., Bonjour O., Laanesoo S., Liblikas I., Pehk T., Jannasch P., et al. Chemically recyclable poly(β-thioether ester)s based on rigid spirocyclic ketal diols derived from citric acid. Biomacromolecules. 2022;23(6):2685-2696. DOI: 10.1021/acs.biomac.2c00452.
11. El Maatougui A., Azuaje J., Coelho A., Cano E., Yanez M., Lopez C., et al. Discovery and preliminary SAR of 5-arylidene-2,2-dimethyl-1,3-dioxane- 4,6-diones as platelet aggregation inhibitors. Combinatorial Chemistry and High Throughput Screening. 2012;15(7):551-554. DOI: 10.2174/138620712801619122.
12. Franchini S., Bencheva L.I., Battisti U.M., Tait A., Sorbi C., Fossa P., et al. Synthesis and biological evaluation of 1,3-dioxolane-based 5-HT1A receptor agonists for CNS disorders and neuropathic pain. Future Medicinal Chemistry. 2018;10(18):2137-2154. DOI: 10.4155/fmc-2018-0107.
13. Zhang Q., Cao R., Liu A., Lei S., Li Y., Yang J., et al. Design, synthesis and evaluation of 2,2-dimethyl-1,3-dioxolane derivatives as human rhinovirus 3C protease inhibitors. Bioorganic & Medicinal Chemistry Letters. 2017;27(17):4061-4065. DOI: 10.1016/j.bmcl.2017.07.049.
14. Raskildina G.Z., Borisova Y.G., Nurlanova S.N., Bashirov I.I., Fahretdinova A.K., Purygin P.P., et al. Anticoagulation and antiaggregation activities of a number of substituted gem-dichlorocyclopropanes and 1,3-dioxacycloalkanes. Butlerov Communications. 2022;70(5):86-91. (In Russian). DOI: 10.37952/ROI-jbc-01/22-70-5-86. EDN: SSWALS.
15. Min L.-J., Wang H., Bajsa-Hirschel J., Yu C.S., Wang B., Yao M.-M., et al. Novel dioxolane ring compounds for the management of phytopathogen diseases as ergosterol biosynthesis inhibitors: synthesis, biological activities, and molecular docking. Journal of Agricultural and Food Chemistry. 2022;70(14):4303-4315. DOI: 10.1021/acs.jafc.2c00541.
16. Khusnutdinova N.S., Sakhabutdinova G.N., Raskil’dina G.Z., Meshcheryakova S.A., Zlotsky S.S., Sultanova R.M. Synthesis and biological activity of diterpenic acid esters containing a cycloacetal fragment. Chem- ChemTech. 2022;65(4):6-12. (In Russian). DOI: 10.6060/ivkkt.20226504.6516. EDN: KMZYIR.
17. Yuan L., Li Z., Zhang X., Yuan X. Crystal structure and biological activity of (3-methyl-1,5-dioxaspiro[5.5] undecan-3-yl)methanol synthesized with nanosolid superacid. Journal of Nanoscience and Nanotechnology. 2017;17(4):2624-2627. DOI: 10.1166/jnn.2017.12701.
18. Pustylnyak V., Kazakova Y., Yarushkin A., Slynko N., Gulyaeva L. Effect of several analogs of 2,4,6-triphenyldi- oxane-1,3 on CYP2B induction in mouse liver. Chemico-Biological Interactions. 2011;194(2-3):134-138. DOI: 10.1016/j.cbi.2011.09.003.
19. Sekimata K., Ohnishi T., Mizutani M., Todoroki Y., Han S.Y., Uzawa J., et al. Brz220 Interacts with DWF4, a cytochrome P450 monooxygenase in brassinosteroid biosynthesis, and exerts biological activity. Bioscience, Biotechnology & Biochemistry. 2008;72(1):7-12. DOI: 10.1271/bbb.70141.
20. Schmidt E.Yu., Bidusenko I.A., Ushakov I.A., Trofimov B.A. Unfolding the frontalin chemistry: a facile selective hydrogenation of 7-methylidene-6,8-dioxabicyclo[3.2.1]octanes, 2:2 ensembles of ketones and acetylene. Mendeleev Communications. 2018;28(5):513-514. DOI: 10.1016/j.mencom.2018.09.021.
21. Sapozhnikov S.V., Shtyrlin N.V., Kayumov A.R., Zamaldinova A.E., Iksanova A.G., Nikitina Е.V., et al. New quaternary ammonium pyridoxine derivatives: synthesis and antibacterial activity. Medicinal Chemistry Research. 2017;26:3188-3202. DOI: 10.1007/s00044-017-2012-9.
22. Musin A.I., Borisova Yu.G., Raskildina G.Z., Spirikhin L.V., Sultanova R.M., Zlotsky S.S. Synthesis, structure and biological activity of 2,2,4-trisubstituted of 1,3-dioxolanes. ChemChemTech. 2023;66(9):20-27. (In Russian). DOI: 10.6060/ivkkt.20236609.6829. EDN: OMHWYL.
23. Gorrichon J.-P., Gaset A., Delmas M. One-step synthesis of 1,3-dioxanes from ketones and paraformaldehyde with a cation exchange resin as catalyst. Synthesis. 1979;3:219. DOI: 10.1055/s-1979-28628.
24. Musin A.I., Borisova Yu.G., Raskil’dina G.Z., Daminev R.R., Davletshin A.R. Zlotskii S.S. Heterogeneous catalytic reduction of substituted 5-acyl-1,3-dioxanes. Fine Chemical Technologies. 2022;17(3):201-209. DOI: 10.32362/2410-6593-2022-17-3-201-209. EDN: MXMOUE.
Review
For citations:
Borisova Yu.G., Bulgakov A.K., Khusnutdinova N.S., Raskil’dina G.Z., Zlotskii S.S., Bulgakova A.A., Meshcheryakova S.A., Sultanova R.M. Synthesis and antimicrobial activity of functionally substituted 1,3-dioxacycloalkanes. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(4):453-461. https://doi.org/10.21285/achb.954. EDN: OTYUUO