Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Thermal esterification of soybean husk polysaccharides with citric acid

https://doi.org/10.21285/achb.970

EDN: WYMTGP

Abstract

The study was aimed at analyzing the efficiency of thermal esterification of soybean husk polysaccharides with citric acid and its effect on the mechanical characteristics of compressed husks. The thermal treatment of a mixture of husks and citric acid was studied within the temperature range of 110–170 °С without the use of solvents and catalysts. The duration of thermal treatment varied from 30 to 180 min. This process was found to be accompanied by the hydrolysis of husk polysaccharides and their esterification within the analyzed temperature range. The main products of thermal treatment are modified husks and bio-oils. The bio-oils contain predominantly the products of citric acid transformation (55 to 82%). The low-molecular-weight transformation products of husk polysaccharides are represented by furan compounds. The process of esterification was confirmed by the results of studying modified husks via infrared spectroscopy and conductometric titration. The accumulation dynamics of ester linkages in husk biomass were also analyzed in relation to temperature and thermal treatment duration. The cross-linking degree of cellulose polymer chains was found to increase with increasing temperature and thermal treatment duration. Comparative tests of the original compressed husk samples and the modified husks revealed an improvement in their mechanical properties following thermal treatment in the presence of citric acid. A 1.2-fold strength increase and a 2.5-fold stiffness increase were observed. The presented results experimentally confirm the potential of esterification of soybean husks with citric acid, with their use as a filler in the production of composite materials.

About the Authors

S. N. Evstaf’ev
Irkutsk National Research Technical University
Russian Federation

Sergei N. Evstaf’ev, Dr. Sci. (Chemistry), Professor, Head of the Department of Chemistry and Biotechnology named after V.V. Tuturina

83, Lermontov St., Irkutsk, 664074



E. S. Fomina
Irkutsk National Research Technical University
Russian Federation

Elena S. Fomina, Cand. Sci. (Chemistry), Associate Professor

83, Lermontov St., Irkutsk, 664074



N. P. Tiguntceva
Irkutsk National Research Technical University
Russian Federation

Nadezhda P. Tiguntceva, Cand. Sci. (Chemistry), Associate Professor

83, Lermontov St., Irkutsk, 664074



References

1. Yao G., Hertel T.W., Taheripour F. Understanding China’s soybean boom from historical validation. In: Agricultural and Applied Economics Association (AAEA) Conferences: 2017 Annual Meeting. 30 July – 1 August 2017, Chicago. Chicago; 2017, 27 p. DOI: 10.22004/ag.econ.258373.

2. Smith W.B., Coffey K.P., Tucker J.D., Hubbell D.S., Kegley E.B., Philipp D., et al. Using soybean hulls to meet dietary energy requirements of gestating cows having restricted access to poor-quality hay. The Professional Animal Scientist. 2017;33(1):101-107. DOI: 10.15232/pas.2016-01553.

3. Bittencourt G.A., de Souza Vandenberghe L.P., Valladares-Diestra K., Herrmann L.W., de Mello A.F.M., Vásquez Z.S., et al. Soybean hulls as carbohydrate feedstock for medium to high-value biomolecule production in biorefineries: a review. Bioresource Technology. 2021;339:125594. DOI: 10.1016/j.biortech.2021.125594.

4. Barros P.J.R., Ascheri D.P.R., Santos M.L.S., Morais C.C., Ascheri J.L.R., Signini R., et al. Soybean hulls: optimization of the pulping and bleaching processes and carboxymethyl cellulose synthesis. International Journal of Biological Macromolecules. 2020;144:208-218. DOI: 10.1016/j.ijbiomac.2019.12.074.

5. Yoo J., Alavi S., Vadlani P., Amanor-Boadu V. Thermo-mechanical extrusionpretreatment for conversion of soybean hulls to fermentable sugars. Bioresource Technology. 2011;102:7583-7590. DOI: 10.1016/j.biortech.2011.04.092.

6. Ferrer A., Salas C., Rojas O.J. Physical, thermal, chemical and rheological characterization of cellulosic microfibrils and microparticles produced from soybean hulls. Industrial Crops and Products. 2016;84:337-343. DOI: 10.1016/j.indcrop.2016.02.014.

7. Bortolatto R., Bittencourt P.R.S., Yamashita F. Biodegradable starch / polyvinyl alcohol composites produced by thermoplastic injection containing cellulose extracted from soybean hulls (Glycine max L.). Industrial Crops & Products. 2022;176:114383. DOI: 10.1016/j.indcrop.2021.114383.

8. Merci A., Marim R.G., Urbano A., Mali S. Films based on cassava starch reinforced with soybean hulls or microcrystalline cellulose from soybean hulls. Food Packaging and Shelf Life. 2019;20:100321. DOI: 10.1016/j.fpsl.2019.100321.

9. Gebresas G.A., Szabó T., Marossy K. A comparative study of carboxylic acids on the cross-linking potential of corn starch films. Journal of Molecular Structure. 2023;1277:134886. DOI: 10.1016/j.molstruc.2022.134886.

10. Ray R., Das S.N., Das A. Mechanical, thermal, moisture absorption and biodegradation behaviour of date palm leaf reinforced PVA/starch hybrid composites. Materials Today: Proceedings. 2021;41:376-381. DOI: 10.1016/j.matpr.2020.09.564.

11. Alavarse A.C., Frachini E.C.G., da Silva R.L.C.G., Lima V.H., Shavandi A., Petri D.F.S. Crosslinkers for polysaccharides and proteins: synthesis conditions, mechanisms, and crosslinking efficiency, a review. International Journal of Biological Macromolecules. 2022;202:558-596. DOI: 10.1016/j.ijbiomac.2022.01.029.

12. Reddy N., Yang Y. Citric acid cross-linking of starch films. Food Chemistry. 2010;118(3):702-711. DOI: 10.1016/j.foodchem.2009.05.050.

13. Zoldners J., Kiseleva T. Modification of hemicelluloses with polycarboxylic acids. Holzforschung. 2013; 67(5):567-571. DOI: 10.1515/hf-2012-0183.

14. Li D., Henschen J., Ek M. Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield. Green Chemistry. 2017;19(23):5564-5567. DOI: 10.1039/C7GC02489D.

15. Shao H., Sun H., Yang B., Zhang H., Hu Y. Facile and green preparation of hemicellulose-based film with elevated hydrophobicity via cross-linking with citric acid. RSC Advances. 2019;9(5):2395-2401. DOI: 10.1039/C8RA09937E.

16. Cui X., Honda T., Asoh T.-A., Uyama H. Cellulose modified by citric acid reinforced polypropylene resin as fillers. Carbohydrate Polymers. 2020;230:115662. DOI: 10.1016/j.carbpol.2019.115662.

17. Feldman D. Cellulose nanocomposites. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry. 2015;52(4):322-329. DOI: 10.1080/10601325.2015.1007279.

18. Otal E.H., Kim M.L., Hinestroza J.P., Kimura M. A solid-state pathway towards the tunable carboxylation of cellulosic fabrics: controlling the surface’s acidity. Membranes. 2021;11(7):514. DOI: 10.3390/membranes11070514.

19. Akhmatgalieva K.I., Amrakulova A.A., Tiguntceva N.P., Evstaf’ev S.N. Extractive substances of soy husk. In: Aktual’nye problemy khimii, biotekhnologii i sfery uslug: materialy VIII Vseros. nauch.-prakt. konf. s mezhdunar. uch. = Actual problems of chemistry, biotechnology and the service sector: Proc. of the 8 th All-Russian Sci. and Pract. Conf. with Int. part. 25–26 April 2024, Irkutsk. Irkutsk: Irkutsk National Research Technical University; 2024, p. 58-62. (In Russian). EDN: OXNRNG.

20. Romeo I., Olivito F., Tursi A., Algieri V., Beneduci A., Chidichimo G., et al. Totally green cellulose conversion into bio-oil and cellulose citrate using molten citric acid in an open system: synthesis, characterization and computational investigation of reaction mechanisms. RSC Advances. 2020;10(57):34738-34751. DOI: 10.1039/d0ra06542k.


Review

For citations:


Evstaf’ev S.N., Fomina E.S., Tiguntceva N.P. Thermal esterification of soybean husk polysaccharides with citric acid. Proceedings of Universities. Applied Chemistry and Biotechnology. 2025;15(2):188-195. (In Russ.) https://doi.org/10.21285/achb.970. EDN: WYMTGP

Views: 155


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)