Extraction and characterization of sodium alginate from the brown alga Fucus vesiculosus
https://doi.org/10.21285/achb.1007
EDN: AEHZAR
Abstract
The study aimed to examine the effects of conditions for obtaining sodium alginate from the brown alga Fucus vesiculosus on the yield, molecular weight, and physicochemical and rheological properties of the polysaccharide, as well as to determine the levels of toxic elements in the obtained product to assess its potential use as a food additive. The extraction was performed under different time (1 and 5 hours) and temperature (25, 60, and 80 °С) conditions, with the use of different precipitants (C2H5OH and HCl). The viscosity-average molecular weight of sodium alginate was determined via capillary viscometry. The identification of samples was performed using Fourier transform infrared spectroscopy. The levels of toxic elements in the alga and sodium alginate were determined through inductively coupled plasma mass spectrometry. The rheological properties of aqueous sodium alginate solutions were studied using a method of shear rheology. The rheological curves were fitted with the Cross and Ostwald – de Waele models. A longer extraction time and a higher extraction temperature were found to increase product yield, molecular weight, and rheological properties, while lowering organoleptic properties. The sample obtained at extraction temperature and time of 25 °С and 1 hour, respectively (with the washing stage repeated five times and the centrifugation stage replaced with filtration), was characterized by the highest values of molecular weight (592 kDa) and rheological properties. Also, in terms of its properties, the obtained sample was superior to the commercial sample. It was shown that since the levels of toxic elements do not exceed the maximum permissible concentrations, sodium alginate can be used as a food additive.
Keywords
About the Authors
D. S. KolotovaRussian Federation
Daria S. Kolotova, Cand. Sci. (Chemistry), Leading Researcher
13, Sportivnaya St., Murmansk, 183010
E. V. Borovinskaya
Russian Federation
Ekaterina V. Borovinskaya, Junior Researcher
13, Sportivnaya St., Murmansk, 183010
V. V. Bordiyan
Russian Federation
Vlada V. Bordiyan, Junior Researcher
13, Sportivnaya St., Murmansk, 183010
S. R. Derkach
Russian Federation
Svetlana R. Derkach, Dr. Sci. (Chemistry), Professor, Chief Researcher
13, Sportivnaya St., Murmansk, 183010
References
1. Abka-Khajouei R., Tounsi L., Shahabi N., Patel A.K., Abdelkafi S., Michaud, P. Structures, properties and applications of alginates. Marine Drugs. 2022;20(6):364. DOI: 10.3390/md20060364.
2. Makarova A.O., Derkach S.R., Khair T., Kazantseva M.A., Zuev Y.F., Zueva O.S. Ion-induced polysaccharide gelation: peculiarities of alginate egg-box association with different divalent cations. Polymers. 2023;15(5):1243. DOI: 10.3390/polym15051243.
3. Łabowska M.B., Michalak I., Detyna J. Methods of extraction, physicochemical properties of alginates and their applications in biomedical field – a review. Open Chemistry. 2019;17(1):738-762. DOI: 10.1515/chem-2019-0077.
4. Cattelan G., Guerrero Gerbolés A., Foresti R., Pramstaller P.P., Rossini A., Miragoli M., et al. Alginate formulations: current developments in the race for hydrogel-based cardiac regeneration. Frontiers in Bioengineering and Biotechnology. 2020;8:414. DOI: 10.3389/fbioe.2020.00414.
5. Nezamdoost-Sani N., Khaledabad M.A., Amiri S., Khaneghah A.M. Alginate and derivatives hydrogels in encapsulation of probiotic bacteria: an updated review. Food Bioscience. 2023;52:102433. DOI: 10.1016/j.fbio.2023.102433.
6. Strobel S.A., Knowles L., Nitin N., Scher H.B., Jeoh T. Comparative technoeconomic process analysis of industrial-scale microencapsulation of bioactives in cross-linked alginate. Journal of Food Engineering. 2020;266:109695. DOI: 10.1016/j.jfoodeng.2019.109695.
7. Bennacef C., Desobry-Banon S., Probst L., Desobry S. Optimization of core-shell capsules properties (Olive oil/alginate) obtained by dripping coextrusion process. LWT. 2022;167:113879. DOI: 10.1016/j.lwt.2022.113879.
8. Sharma A., Verma C., Singh P., Mukhopadhyay S., Gupta A., Gupta B. Alginate based biomaterials for hemostatic applications: innovations and developments. International Journal of Biological Macromolecules. 2024;264:130771. DOI: 10.1016/j.ijbiomac.2024.130771.
9. Solovieva E.V., Teterina A.Yu., Klein O.I., Komlev V.S., Alekseev A.A., Panteleyev A.A. Sodium alginate-based composites as a collagen substitute for skin bioengineering. Biomedical Materials. 2021;16:015002. DOI: 10.1088/1748-605X/abb524.
10. Vereshchagin A.L., Morozova E.A. Chemical and technological aspects of the production of heterogeneous alginate gels (review). South-Siberian Scientific Bulletin. 2020;5:12-31. (In Russian). EDN: JSDDDQ.
11. Bojorges H., López-Rubio A., Martínez-Abad A., Fabras M.J. Overview of alginate extraction processes: impact on alginate molecular structure and techno-functional properties. Trends in Food Science & Technology. 2023;140:104142. DOI: 10.1016/j.tifs.2023.104142.
12. Nath P.C., Sharma R., Debnath S., Sharma M., Inbaraj B.S., Dikkala P.K., et al. Recent trends in cellulose-based biodegradable polymers for smart food packaging industry. International Journal of Biological Macromolecules. 2023;253:127524. DOI: 10.1016/j.ijbiomac.2023.127524.
13. Saji S., Hebden A., Goswami P., Du C. A brief review on the development of alginate extraction process and its sustainability. Sustainability. 2022;14(9):5181. DOI: 10.3390/su14095181.
14. Silva M., Gomes F., Oliveira F., Morais S., Delerue-Matos C. Microwave-assisted alginate extraction from Portuguese Saccorhiza polyschides – influence of acid pretreatment. International Journal of Chemical, Nuclear, Materials and Metallurgical Engineering. 2015;9(1):30-33.
15. Chee S.-Y., Wong P.-K., Wong C.-L. Extraction and characterisation of alginate from brown seaweeds (Fucales, Phaeophyceae) collected from Port Dickson, Peninsular Malaysia. Journal of Applied Phycology. 2011;23:191-196. DOI: 10.1007/s10811-010-9533-7.
16. Fertah M., Belfkira A., Taourirte M., Brouillette F. Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arabian Journal of Chemistry. 2017;10:S3707-S3714. DOI: 10.1016/j.arabjc.2014.05.003.
17. Mazumder A., Holdt S.L., De Francisci D., Alvarado-Morales M., Mishra H.N., Angelidaki I. Extraction of alginate from Sargassum muticum: process optimization and study of its functional activities. Journal of Applied Phycology. 2016;28:3625-3634. DOI: 10.1007/s10811-016-0872-x.
18. Hernandez-Carmona G., McHugh D.J., López-Gutiérrez F. Pilot plant scale extraction of alginates from Macrocystis pyrifera. 2. Studies on extraction conditions and methods of separating the alkaline-insoluble residue. Journal of Applied Phycology. 1999;11:493-502. DOI: 10.1023/A:1008114709681.
19. Truus K., Vaher M., Taure I. Algal biomass from Fucus vesiculosus (Phaeophyta): investigation of the mineral and alginate components. Proceedings of the Estonian Academy of Sciences. Chemistry. 2001;50(2):95-103. DOI: 10.3176/chem.2001.2.04.
20. Gomez C.G., Perez Lambrecht M.V., Lozano J.E., Rinaudo M., Villar M.A. Influence of the extraction-purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). International Journal of Biological Macromolecules. 2009;44(4):365-371. DOI: 10.1016/j.ijbiomac.2009.02.005.
21. Fourest E., Volesky B. Alginate properties and heavy metal biosorption by marine algae. Applied Biochemistry and Biotechnology. 1997;67:215-226. DOI: 10.1007/BF02788799.
22. Akbar M., Yaqoob A., Ahmad A., Luque R. Sodium alginate: an overview. In: Ahmad A., Ahmad I., Kamal T., Asiri A.M., Tabassum S. (eds). Sodium Alginate-Based Nanomaterials for Wastewater Treatment. Elsevier; 2023, p. 1-17. DOI: 10.1016/B978-0-12-823551-5.00012-4.
23. Sartori C., Finch D.S., Ralph B., Gilding K. Determination of the cation content of alginate thin films by FTi.r. spectroscopy. Polymer. 1997;38(1):43-51. DOI: 10.1016/S0032-3861(96)00458-2.
24. Podkorytova A.V., Vafina L.Kh., Murav’eva E.A., Sharina Z.N. Sanitary and hygienic characteristics of brown algae of the White and Barents seas. Rybprom: tekhnologii i oborudovanie dlya pererabotki vodnykh bioresursov. 2009;4:33-39. (In Russian). EDN: KYGTPZ.
25. Ma J., Lin Y., Chen X., Zhao B., Zhang J. Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions. Food Hydrocolloids. 2014;38:119-128. DOI: 10.1016/j.foodhyd.2013.11.016.
26. Malkin A.Ya., Isaev A.I. Rheology: concepts, methods, and applications. ChemTec Publishing; 2012, 473 p. DOI: 10.1016/C2011-0-04626-4.
Review
For citations:
Kolotova D.S., Borovinskaya E.V., Bordiyan V.V., Derkach S.R. Extraction and characterization of sodium alginate from the brown alga Fucus vesiculosus. Proceedings of Universities. Applied Chemistry and Biotechnology. (In Russ.) https://doi.org/10.21285/achb.1007. EDN: AEHZAR


























