Chalcogenisation of unsaturated organohalogen compounds by elemental chalcogens and their metal derivatives
https://doi.org/10.21285/2227-2925-2019-9-4-576-589
Abstract
The presented review addresses the prospects for application of organochalcogen compounds in various fields of technology, medicine, agriculture and organic synthesis. The unsaturated chalcogenisation products appear to be of much greater interest compared to their saturated analogues, especially in organic synthesis. This study observes halogen derivatives of ethene, propene, propyne and butene subjected to chalcogenisation as unsaturated substrates. The indicated reagents are related either to large-tonnage products of industrial organochlorine synthesis or waste products of organochlorine production with their disposal presenting an important environmental task. According to analysed publications, chalcogenisation processes are based on the application of elemental chalcogens (sulphur, selenium, and tellurium) or their available metal derivatives (Na2S, etc.). In the reactions of chalcogens with unsaturated halogen derivatives, the elements both in an accessible form and in a free state are subjected to reductive activation resulting in the formation of anionic nucleophilic reagents. Complex metal hydrides, chalcogenide anions and rongalite are exampled for application in terms of reducing agents. The review emphasises the prospects of basic reduction systems based on hydrazine hydrate in activation processes. Special aspects in the introduction of caustic alkalis and an monoethanolamine organic amine as bases in these systems are described. For the considered chalcogenisation processes, conditions are specified providing the most optimal yield of certain products. In some particular cases, the stereochemistry of the obtained compounds is presented considering the formation conditions for the stereoisomers of a certain configuration. For a number of the obtained compounds, the prospects of practical application are provided. In general, the current review is intended for specialists working in the field of organic synthesis and application of organochalcogen compounds.
The authors declare no conflict of interests regarding the publication of this article.
About the Authors
I. B. RozentsveigRussian Federation
Igor B. Rozentsveig, Dr. Sci. (Chemistry), Associated Professor, Head of Laboratory of Haloorganic Compounds
1, Favorsky St., Irkutsk, 664033
Professor, Department of Theoretical and Applied Organic Chemistry and Polymerization Processes
1, K. Marks St., Irkutsk, 664003
V. S. Nikonova
Russian Federation
Valentina S. Nikonova, Cand. Sci. (Chemistry), Reseacher
1, Favorsky St., Irkutsk, 664033
N. A. Korchevin
Russian Federation
Nikolai A. Korchevin, Dr. Sci. (Chemistry), Professor, Leading Researcher
1, Favorsky St., Irkutsk 664033
Professor, Department of Electrochemical Production Technologies
60, Chaikovsky St., Angarsk 665835
References
1. Belen’kii LI. (ed.) Chemistry of organosulfur compounds: general problems. New York: Ellis Horwood; 1990. 560 p.
2. McGarrigle EM, Myers EL, Illa O, Shaw MA, Riches SL, Aggarwal VK. Chalcogenides as organocatalysts. Chemical Reviews. 2007;107(12): 5841–5883. https://doi.org/10.1021/cr068402y
3. Nogami T, Tasaka Y, Inoe K, Mikawa H. New conductive aliphatic tellurium polymers: poly- (methylene ditelluride) and related polymers. Journal of the Chemical Society, Chemical Communications. 1985;5:269–271. https://doi.org/10.1039/C39 850000269
4. Petrovich YuA, Podorozhnaya RP. Selenoenzimes and other selenoproteins and their biological role. Uspekhi sovremennoi biologii. = Successes of modern biology. 1981;91(1):127–144. (In Russian)
5. Gusarova NK, Kuznetsova EE, Potapov VA Pushechkina TA, Fedoseev AP, Kirdei EG. Synthesis and biological activity of organylthioselenides. Khimiko-farmatsevticheskii zhurnal = Pharmaceutical Chemistry Journal. 1984;18(1):26–28. (In Russian)
6. Sadekov ID, Bargan IA, Maksimenko AA, Minkin VI. The study of tellurorganic compounds antibacterial properties. Khimiko-farmatsevticheskii zhurnal. = Pharmaceutical Chemistry Journal. 1982; 16(9):1073–1077. (In Russian)
7. Lin YA, Davis BG. The allylic chalcogen effect in the olefin metathesis. Belstein Journal of Organic Chemistry. 2010;6:1219–1228. https://doi.org/10.3762/bjoc.6.140
8. Trofimov BA, Shainyan BA. Vinyl sulfides. In: Patai S, Rappoport Z. (eds.) Chemistry of sulfurcontaining functional groups. Supplement S. New York: John Wiley & Sons; 1993. P. 659–797.
9. Beletskaya IP, Ananikov VP. Unusual influence of the structures of transition metal complexes on catalytic C-S and C-Se bond formation under homogeneous and heterogeneous conditions. European Journal of Organic Chemistry. 2007;21: 3431–3444. https://doi.org/10.1002/ejoc.200700119
10. Shinada T, Fuji T, Ohtani Y, Yoshida Y, Ohfune Y. Syntheses of gabosine A, B, D, and E from allyl sulfide derived from(-)-quinic acid. Synlett. 2002;8;1341–1343. https://doi.org/10.1055/s-2002- 32985
11. Ma S, Hao X, Meng X, Huang X. Studies on the regio- and stereoselectivity of halohydroxylation of 1,2-allenyl sulfides or selenides. Journal of Organic Chemistry. 2004;69(17):5720–5724. https://doi.org/ 10.1021/jo049593c
12. Vasil’ev AA, Engman L. Iodothyronine deiodinase mimics. Deiodination of o,o'-diiodophenols by selenium and tellurium reagents. Journal of Organic Chemistry. 1998;63(12):3911–3917. https://doi.org/10.1021/jo972240b
13. Deryagina EN, Russavskaya NV, Papernaya LK, Levanova EP, Sukhomazova EN, Korchevin NA. Synthesis of organochalcogen compounds in basic reducing systems. Russian Chemical Bulletin. 2005;54(11):2473–2483. https://doi.org/10.1007/s11172-006-0143-0
14. Levanova EP, Vakul’skaya TI, Shevchenko SG, Grabel’nykh VA, Sukhomazova EN, Elaev AV, et al. Synthesis and paramagnetic properties of polytelluride oligomers. Russian Journal of Organic Chemistry. 2008;44(10):1422–1427. https://doi.org/10.1134/S1070428008100047
15. Shainyan BA. Reactions involving bimolecular nucleophilic substitution at a vinyl centre. Russian Chemical Reviews. 1986;55(6):511–530. https://doi.org/10.1070/RC1986v055n06ABEH003205
16. Voronkov М.G., Deryagina E.N., Kuznetsova М.А., Kalikhman I.D. High-temperature organic synthesis. Reaction of vinyl chloride with hydrogen sulfide – new method for synthesis of vinyl thiol. Zhurnal organicheskoi khimii = Journal of Organic Chemistry. 1978;14(1):185–188. (In Russian)
17. Voronkov МG, Vlasova NN, Zhila GYu. Photochemical reaction of acetylene with hydrogen sulfide. Zhurnal organicheskoi khimii = Journal of Organic Chemistry 1984;20(1):211–212. (In Russian)
18. Lown EM, Dedio EL, Strausz OP, Gunning NE. The reactions of sulfur atoms. VIII. Further investigation of the reactions with olefins. Relative rates of addition of sulfur (3 P) and (1D) atoms. Journal of the American Chemical Society. 1967;89(5): 1056–1062. https://doi.org/10.1021/ja00981a003
19. Tsuchiya T, Shimizu T, Kamigata N. Unsaturated thiacrown ethers: synthesis, physical properties, and formation of a silver complex. Journal of the American Chemical Society. 2001;123(47): 11534–11538. https://doi.org/10.1021/ja0102742
20. Shimizu T, Kawaguchi M, Tsuchiya T, Hirabayashi K, Kamigata N. Unsaturated selenacrown ethers: synthesis, structure, and formation of silver complexes. Journal of Organic Chemistry. 2005;70(13): 5036–5044. https://doi.org/10.1021/jo0502807
21. Sun D-Q, Yang J-K. An economical approach to the synthesis of unsaturated thiacrown ethers. Synthesis. 2011;15:2454–2458. https://doi.org/10.1055/s-0030-1260066
22. Levanova ЕP, Nikonova VS, Grabel’nykh VА, Russavskaya NV, Albanov AI, Rozentsveig IB, et al. Reactions of Dichloroethenes with Sulfur in the System Hydrazine hydrate–KОН. Russian Journal of General Chemistry. 2018;88(3):383–388. https://doi.org/10.1134/S1070363218030015
23. Ikeda Y, Nagoya I, Ozaki M. Electronic states and electrical conductivities of polyvinylenesulphides. Synthetic Metals. 1987;21(2):235–240. https://doi.org/10.1016/0379-6779(87)90092-0
24. Russell J. The NMR spectra of 1,4-dioxin and 1,4-dithiin partially oriented in a nematic phase. Organic Magnetic Resonance. 1972;4(3):433–439. https://doi.org/10.1002/mrc.1270040310
25. Levanova EP, Nikonova VS, Grabel’nykh VA, Russavskaya NV, Albanov AI, Rozentsveig IB, et al. Reactions of 1,1-Dichloroethene with elemental chalcogens in the system hydrazine hydrate–alkali. Russian Journal of Organic Chemistry. 2016;52(7): 1070–1071. https://doi.org/10.1134/S1070428016070307
26. Trofimov BA, D'yachkova SG, Gusarova NK, Sinegovskaya LM, Myachina GF, Korzhova SA, et al. The synthesis of polysulfide polymers from tetrachloroethene and sodium polysulfides. Sulfur Letters. 1999;22(5):169–177.
27. Sultangareev PG, Rozinov VG, Albanov AV, Voronkov MG. Reactions of Polychloroethylenes with Sodium Polysulfides in Aqueous-Alkaline Dimethylformamide. Russian Journal of General Chemistry. 2003;73(2):325–236. https://doi.org/10. 1023/A:1024781130432
28. Trofimov BA, D’yachcova SG, Scotheim T, Gusarova NK, Myachina GF, Korzhova SA, et al. Reduction of poly[dicarbon polysulfides] synthesized from tetrachloroethene and sodium polysulfides. Sulfur Letters. 1999;23(1):33–47. https://doi.org/10.10 80/10426500008045219
29. Deryagina EN, Korchevin NА, Papernaya LК. Новые пути синтеза несимметричных диорганилсульфидов New ways for the synthesis of asymmetric diorganyl sulfides. Zhurnal obshchei khimii = Journal of General Chemistry. 1997;67(5): 866–869. (In Russian)
30. Kataev ЕG, Kataeva LМ, Chmutova GА. Allyl phenyl selenide and its prototropic isomerization. Zhurnal organicheskoy khimii = Journal of Organic Chemistry. 1966;2(12):2244–2248. (In Russian)
31. Kwart H, Evans R. The thio-Claisen rearrangement. The mechanism of thermal rearrangement of allyl aryl sulphides. Journal of Organic Chemistry. 1966;31(2):413–419. https://doi.org/10. 1021/jo01340a016
32. Mortensen JZ, Hedegaard B, Lawesson S-O. Thiophene chemistry. XVII. Thio-Claisen rearrangement of allyl thienyl sulfides. Tetrahedron. 1971; 27(10):3831–3838. https://doi.org/10.1016/S0040- 4020(01)98244-4
33. Anisimov АV, Viktorova ЕА, Danilova ТА. Molecular rearrangements of organosulfur compounds. Мoscow: Moscow State University; 1989, 122 p. (In Russian).
34. Korchevin NA, Sukhomazova ÉN, Russavskaya NV, Turchaninova LP, Sigalov MV, Klyba LV, et al. Thermal transformations of allyl 2-thienyl sulfide and selenide. Chemistry of Heterocyclic Compounds. 1991;27(10):1049–1052. https://doi.org/10. 1007/BF00486794
35. Deryagina EN, Korchevin NA, Russavskaya NV, Grabel’nykh VA. A mechanism of the hydrogenation of the double bond in the synthesis of allyl chalcogenides in the hydrazine hydratepotassium hydroxide system. Russian Chemical Bulletin. 1998;47(9):1827–1829. https://doi.org/10. 1007/BF02495714
36. Amosova SV, Musorin GК, Kopylova IG, Keiko VV. Allyl propyl selenide formation in reaction of Se–KOH–N2H4·H2O with allyl chloride. Zhurnal obshchey khimii = Journal of General Chemistry. 1990;60(2):473. (In Russian)
37. Levanova EP, Grabel’nykh VA, Russavskaya NV, Klyba LV, Zhanchipova ER, Albanov AI, et al. Reactions of 2,3-dichloro-1-propene with sulfur and tellurium in the system hydrazine hydrateKOH. Russian Journal of General Chemistry. 2009;79(6):1097–1101 https://doi.org/10.1134/S107 0363209060103
38. Levanova EP, Grabel'nykh VA, Russavskaya NV, Rozentsveig IP, Tarasova OA, Korchevin NA. Reaction of 2,3-dichloroprop-1-ene with sulfur in hydrazine hydrate-monoethanolamine system. Russian Journal of General Chemistry. 2011; 81(3):611–612. https://doi.org/10.1134/S107036321 1030315
39. Levanova EP, Grabel'nykh VA, Russavskaya NV, Albanov AI, Elaev AV, Tarasova OA, et al. Features of the reaction of 2,3-dichloroprop-1-ene with selenium in a hydrazine hydrate – base systems. Russian Journal of General Chemistry. 2011; 81(7):1560–1561.
40. Levanova EP, Vshivtsev VYu, Grabel’- nykh VA, Sukhomazova EN, Russavskaya NV, Albanov AI, et al. Reaction of tellurium with 2,3-dichloro-1-propene in the system hydrazine hydratealkali. A novel approach to synthesis of allene. Russian Journal of General Chemistry. 2008;78(10): 1980–1981. https://doi.org/10.1134/S1070363208100289
41. Taber AM, Mushina EA, Krentsel' BA. Allen hydrocarbons: production, properties, application. Moscow: Nauka; 1987. 205 p. (In Russian)
42. Levanova EP, Nikonova VS, Grabel’nykh VA, Rozentsveig IB, Russavskaya NV, Albanov AI, et al. Chalcogenation of 1,3-dichloropropene with elemental chalcogens in the system hydrazine hydrate – base. Russian Journal of General Chemistry. 2016; 86(6):1282–1287. https://doi.org/10.1134/S1070363 216060104
43. Gal Y-S, Choi S-K. Cyclopolymerization of dipropargyl sulfide by transition metal catalysts. Journal of Polymer Science. Part C: Polymer Letters. 1988;26(2):115–121. https://doi.org/10.1002/pol.1988.140260210
44. Amosova SV, Martynov AV. Dipropargyl selenide. Russian Journal of Organic Chemistry. 2011; 47(11):1282–1287. https://doi.org/10.1134/
45. Braverman S, Zafrani Y, Gottlieb HE. Base catalyzed rearrangement of π-conjugated sulfur and selenium bridged propargylic systems. Tetrahedron. 2001;57(44):9177–9185. https://doi.org/10.1016/S0040-4020(01)00923-1
46. Turchaninova LP, Sukhomazova EN, Levanova EP, Korchevin NA, Deryagina EN, Voronkov МG. High-temperature organic synthesis XL. Thermal heterocyclization of bis(3-chloro-2-butenyl)disulfide. Zhurnal organicheskoy khimii = Journal of Organic Chemistry. 1992;28(12):2473–2476. (In Russian)
Review
For citations:
Rozentsveig I.B., Nikonova V.S., Korchevin N.A. Chalcogenisation of unsaturated organohalogen compounds by elemental chalcogens and their metal derivatives. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(4):576-589. https://doi.org/10.21285/2227-2925-2019-9-4-576-589