Эволюция взглядов на иммунитет растений: от закона H.H. Flor «ген-на-ген» до «зигзаг модели» J. Jones и J. Dangl
https://doi.org/10.21285/2227-2925-2020-10-3-424-438
Аннотация
Изучение защитных механизмов растения в ответ на воздействие патогена привело к созданию в середине прошлого века концепции «ген-на-ген взаимодействия» (H.H. Flor), которая на сегодняшний день признана классической теорией фитоиммунитета. Согласно данной теории, исход взаимоотношений в фитопатосистеме «растение – патоген» – совместимость или несовместимость, находится под генетическим контролем взаимодействующих организмов и определяется наличием специфических генов патогена и растения-хозяина. Достижения последних лет в области фитоиммунологии, полученные благодаря новейшим методам молекулярной биологии и биоинформатики, существенно дополнили и углубили классические взгляды на иммунитет растений и обосновали современную концепцию фитоиммунитета «зигзаг модель» (J. Jones и J. Dangl). Согласно современным воззрениям, защита растительного организма от воздействий патогена определяется функционированием многоуровневой врожденной иммунной системы с участием различных структур и механизмов специфического и неспецифического врожденного иммунитета. Распознавание мембранными растительными рецепторами консервативных молекулярных паттернов, ассоциированных с микроорганизмами, а также молекул, возникающих вследствие атаки гидролитическими ферментами патогена клеточных стенок хозяина, определяет базовый неспецифический иммунитет растения. Детекция эффекторных молекул патогена внутриклеточными рецепторами растения запускает специфический эффектор-индуцируемый иммунитет, включающий развитие реакции сверхчувствительности, системной устойчивости и иммунной памяти растения. Факторы вирулентности и стратегии нападения патогенов, с одной стороны, и участники, и механизмы иммунной системы растений, с другой, являются результатом постоянного совместного эволюционирования, что напоминает «гонку вооружения и обороны» между противоборствующими сторонами. В статье обсуждаются молекулярно-генетические процессы врожденного иммунитета растений, их механизм и участники в свете современных достижений фитоиммунологии.
Об авторах
Т. Н. ШафиковаРоссия
Шафикова Татьяна Николаевна, к.б.н., старший научный сотрудник
664033, г. Иркутск, ул. Лермонтова, 132
Ю. В. Омеличкина
Россия
Омеличкина Юлия Викторовна, к.б.н., ведущий инженер
664033, г. Иркутск, ул. Лермонтова, 132
Список литературы
1. Flor H.H. Inheritance of reaction to rust in flax // Journal of Agricultural Research. 1947. Vol. 74. P. 241–262.
2. Janeway C., Medzhitov R. Innate immune recognition // Annual Review of Immunology. 2002. Vol. 20. P. 197–216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
3. Лебедев К.А., Понякина И.Д. Иммунология образраспознающих рецепторов. Интегральная иммунология. М.: URSS, 2009. 253 с.
4. Zhang J., Zhou J.-M. Plant immunity triggered by microbial molecular signatures // Molecular Plant. 2010. Vol. 3. Issue 5. P. 783–793. https://doi.org/10.1093/mp/ssq035
5. Jones J.D.G., Vance R.E., Dangl J.L. Intracellular innate immune surveillance devices in plants and animals // Science. 2016. Vol. 354. Issue 6316. aaf6395. https://doi.org/10.1126/science.aaf6395
6. Jones J.D.G., Dangl J.L. The plant immune system // Nature. 2006. Vol. 444. Issue 7117. P. 323–329. https://doi.org/10.1038/nature05286
7. Дьяков Ю.Т. Пятьдесят лет теории «ген-на-ген» // Успехи современной биологии. 1996. Т. 116. С. 293–305.
8. Staskawicz B., Ausubel E., Baker B., Ellis J.G., Jones J.D. Molecular genetic of plant disease resistance // Science. 1995. Vol. 268. Issue 5211. P. 661–666. https://doi.org/10.1126/science.7732374
9. Вавилов Н.И. Иммунитет растений к инфекционным заболеваниям. M.: Наука, 1986. 519 с.
10. Albersheim P., Anderson-Proyty A.J. Carbohydrates, proteins, cell surfaces, and the biochemistry of pathogenesis // Annual Review of Plant Physiology and Plant Molecular Biology. 1975. Vol. 26. P. 31–52. https://doi.org/10.1146/annurev.pp.26.060175.000335
11. Robatzek S., Saijo Y. Plant immunity from A to Z // Genome Biology. 2008. Vol. 9. Issue 4. Article 304. https://doi.org/10.1186/gb-2008-9-4-304
12. Bednarek P. Chemical warfare or modulators of defense responses-the function of secondary metabolites in plant immunity // Current Opinion in Plant Biology. 2012. Vol. 15. Issue 4. P. 407–414. https://doi.org/10.1016/j.pbi.2012.03.002
13. Janeway C.A. Autoimmune disease: immunotherapy by peptides? // Nature. 1989. Vol. 341. Issue 6242. P. 482–483. https://doi.org/10.1038/341482a0
14. Staal J., Dixelius C. Tracing the ancient origins of plant innate immunity // Trends Plant Science. 2007. Vol. 12. Issue 8. P. 334–342. https://doi.org/10.1016/j.tplants.2007.06.014
15. Lotze M.T., Zeh H.J., Rubartelli A., Sparvero L.J., Amoscato A.A., Washburn N.R., et al. The grateful dead: damage associated molecular pattern molecules and reduction/oxidation regulate immunity // Immunological Reviews. 2007. Vol. 220. Issue 1. P. 60–81. https://doi.org/10.1111/j.1600-065X.2007.00579.x
16. Couto D., Zipfel C. Regulation of pattern recognition receptor signalling in plants // Nature Reviews Immunology. 2016. Vol. 16. P. 537–552. https://doi.org/10.1038/nri.2016.77
17. Vance R.E., Isberg R.R., Portnoy D.A. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system // Cell Host Microbe. 2009. Vol. 6. Issue 1. P. 10–21. https://doi.org/10.1016/j.chom.2009.06.007
18. Durrant W.E., Dong X. Systemic acquired resistance // Annual Review of Phytopathology. 2004. Vol. 42. P. 185–209. https://doi.org/10.1146/annurev.phyto.42.040803.140421
19. Slaughter A., Daniel X., Flors V., Luna E., Hohn B., Mauch-Mani B. Descendants of primed Arabidopsis plants exhibit enhanced resistance to biotic stress // Plant Physiology. 2012. Vol. 158. P. 835–843. https://doi.org/10.1104/pp.111.191593
20. Омеличкина Ю.В., Шафикова Т.Н., Алексеенко А.Л., Маркова Ю.А., Еникеев А.Г., Рихванов Е.Г. Ответные реакции растений и культуры клеток табака на заражение Clavibacter michiganensis ssp. sepedonicus // В мире научных открытий. 2010. N. 1-4. С. 89–94.
21. Маркова Ю.А., Савилов Е.Д., Анганова Е.В., Войников В.К. Природная среда как потенциальное местообитание патогенных и условно-патогенных энтеробактерий. Иркутск: Изд-во РИО ИГМАПО, 2013. 144 с.
22. Dow M., Newman M.A., von Roepenack E. The induction and modulation of plant defense response by bacterial lipopolysaccharides // Annual Review of Phytopathology. 2000. Vol. 38. P. 241–261. https://doi.org/10.1146/annurev.phyto.38.1.241
23. Nicaise V., Roux M., Zipfel C. Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm // Plant physiology. 2009. Vol. 150. P. 1638–1647. https://doi.org/10.1104/pp.109.139709
24. Sakamoto T., Deguchi M., Brustolini O., Santos A., Silva F., Fontes E. The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense // BMC Plant Biology. 2012. Vol. 12. P. 229. https://doi.org/10.1186/1471-2229-12-229
25. Li L., Yu Y., Zhou Z., Zhou J.M. Plant patternrecognition receptors controlling innate immunity // Science China Life Sciences. 2016. Vol. 59. P. 878–888. https://doi.org/10.1007/s11427-016-0115-2
26. Shiu S.H., Bleecker A.B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases // Proceedings of the National Academy of Sciences USA. 2001. Vol. 98. Issue 19. P. 10763–10768. https://doi.org/10.1073/pnas.181141598
27. Kopp E., Medzhitov R. Recognition of microbial infection by Toll-like receptors // Current Opinion in Immunology. 2003. Vol. 15. Issue 4. P. 396–401. https://doi.org/10.1016/S0952-7915(03)00080-3
28. Kawai T., Akira S. The role of patternrecognition receptors in innate immunity: update on Toll-like receptors // Nature Immunology. 2010. Vol. 11. P. 373–384. https://doi.org/10.1038/ni.1863
29. Dardick C., Ronald P. Plant and animal pathogen recognition receptors signal through non-RD kinases // PLoS Pathogens. 2006. Vol. 2. Issue 1. P. 0014–0028. https://doi.org/10.1371/journal.ppat.0020002
30. Lee S.-W., Han S.-W., Sririyanum M., Park C.-J., Seo Y.-S., Ronald P.C. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity // Science. 2009. Vol. 326. Issue 5954. P. 850–853. https://doi.org/10.1126/science.1173438
31. Kunze G., Zipfel C., Robatzek S., Niehaus K., Boller T., Felix G. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants // Plant Cell. 2004. Vol. 16. P. 3496–3507. https://doi.org/10.1105/tpc.104.026765
32. Miya A., Albert P., Shinya T., Desaki Y., Ichimura K., Shirasu K., et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signalling in Arabidopsis // Proceedings of the National Academy of Sciences USA. 2007. Vol. 104. Issue 49. P. 19613–19618. https://doi.org/10.1073/pnas.0705147104
33. Liu B., Li J.-F., Ao Y., Qu J., Li Z., Su J., et al. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity // Plant Cell. 2012. Vol. 24. P. 3406–3419. https://doi.org/10.1105/tpc.112.102475
34. Ranf S., Gisch N., Schäffer M., Illig T., Westphal L., Knirel Y.A., et al. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana // Nature Immunology. 2015. Vol. 16. Issue 4. P. 426–433. https://doi.org/10.1038/ni.3124
35. Brutus A., Sicilia F., Macone A., Cervone F., De Lorenzo G. A domain swap approach reveals a role of the plant wallassociated kinase 1 (WAK1) as a receptor of oligogalacturonides // Proceedings of the National Academy of Sciences USA. 2010. Vol. 107. Issue 20. P. 9452–9457. https://doi.org/10.1073/pnas.1000675107
36. Forrest R.S., Lyon G.D. Substrate degradation patterns of polygalacturonic acid lyase from Erwinia carotovora and Bacillus polymyxa and release of phytoalexin-eliciting oligosaccharides from potato cell walls // Journal of Experimental Botany. 1990. Vol. 41. Issue 4. P. 481–488. https://doi.org/10.1093/jxb/41.4.481
37. Anderson C.M., Wagner T.A., Perret M., He Z.-H., He D., Kohorn B.D. WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix // Plant Molecular Biology. 2001. Vol. 47. P. 197–206. https://doi.org/10.1023/A:1010691701578
38. Schulze B., Mentzel T., Jehle A.K., Mueller K., Beeler S., Boler T., et al. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1 // Journal of Biological Chemistry. 2010. Vol. 285. Issue 13. P. 9444–9451. https://doi.org/10.1074/jbc.M109.096842
39. Sun Y., Li L., Macho A.P., Han Z., Hu Z., Zipfel C., et al. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex // Science. 2013. Vol. 342. Issue 6158. P. 624–628. https://doi.org/10.1126/science.1243825
40. Wang Y., Li Z., Liu D., Xu J., Wei X., Yan L., et al. Assessment of BAK1 activity in different plant receptor-like kinase complexes by quantitative profling of phosphorylation patterns // Journal of Proteomics. 2014. Vol. 108. P. 484–493. https://doi.org/10.1016/j.jprot.2014.06.009
41. Shan L., He P., Li J., Heese A., Peck S.C., Nürnberger T., et al. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity // Cell Host Microbe. 2008. Vol. 4. Issue 1. P. 17–27. https://doi.org/10.1016/j.chom.2008.05.017
42. Belkhadir Y., Jaillais Y., Epple P., Balsemao-Pires E., Dangl J.L., Chory J. Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns // Proceedings of the National Academy of Sciences of the USA. 2012. Vol. 109. Issue 1. P. 297–302. https://doi.org/10.1073/pnas.1112840108
43. Liu J., Ding P., Sun T., Nitta Y., Dong O., Huang X., et al. Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases // Plant Physiology. 2013. Vol. 161. P. 2146–2158. https://doi.org/10.1104/pp.112.212431
44. Ren D., Liu Y., Yang K.-Y., Han L., Mao G., Glazebrook J, et al. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis // Proceedings of the National Academy of Sciences of the USA. 2008. Vol. 105. Issue 14. P. 5638–5643. https://doi.org/10.1073/pnas.0711301105
45. Bi G., Zhou J.-M. MAP kinase signaling pathways: a hub of plantmicrobe interactions // Cell Host and Microbe. 2017. Vol. 21. Issue 3. P. 270–273. https://doi.org/10.1016/j.chom.2017.02.004
46. Pandey S.P., Somssich I.E. The role of WRKY transcription factors in plant immunity // Plant Physiology. 2009. Vol. 150. Issue 4. P. 1648–1655. https://doi.org/10.1104/pp.109.138990
47. Ishihama N., Yoshioka H. Post-translational regulation of WRKY transcription factors in plant immunity // Current Opinion in Plant Biology. 2012. Vol. 15. Issue 4. P. 431–437. https://doi.org/10.1016/j.pbi.2012.02.003
48. Adachi H., Nakano T., Miyagawa N., Ishihama N., Yoshioka M., Katou Y., et al. WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana // Plant Cell. 2015. Vol. 27. Issue 9. P. 2645–2663. https://doi.org/10.1105/tpc.15.00213
49. Dong J., Chen C., Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response // Plant Molecular Biology. 2003. Vol. 51. P. 21–37. https://doi.org/10.1023/A:1020780022549
50. Таланова В.В., Титов А.Ф., Топчиева Л.В., Малышева И.Е., Венжик Ю.В., Фролова С.А. Экспрессия генов транскрипционного фактора WRKY и стрессовых белков у растений пшеницы при холодовом закаливании и действии АБК // Физиология растений. 2009. T. 56. N 5. C. 776–782. https://doi.org/10.1134/S102144370
51. Wei W., Zhang Y., Han L., Guan Z., Chai T. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco // Plant Cell Reports. 2008. Vol. 27. P. 795–803. https://doi.org/10.1007/s00299-007-0499-0
52. Tsuda K., Sato M., Glazebrook J., Cohen J.D., Katagiri F. Interplay between MAMP triggered and SA-mediated defense responses // The Plant Journal. 2008. Vol. 53. P. 763–775. https://doi.org/10.1111/j.1365-313X.2007.03369.x
53. Withers J., Dong X. Post-translational regulation of plant immunity // Current Opinion in Plant Biology. 2017. Vol. 38. P. 124–132. https://doi.org/10.1016/j.pbi.2017.05.004
54. Segonzac C., Macho A.P., Sanmartin M., Ntoukakis V., Sanchez-Serrano J.J., Zipfel C. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity // The EMBO Journal. 2014. Vol. 33. Issue 18. P. 2069–2079. https://doi.org/10.15252/embj.201488698
55. Couto D., Niebergall R., Liang X., Bucherl C.A., Sklenar J., Macho A.P., et al. The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1 // PLoS Pathogens. 2016. Vol. 12. e1005811. https://doi.org/10.1371/journal.ppat.1005811
56. Zhou J., Lu D., Xu G., Finlayson S.A., He P., Shan L. The dominant negative ARM domain uncovers multiple functions of PUB13 in Arabidopsis immunity, flowering, and senescence // Journal of Experimental Botany. 2015. Vol. 66. Issue 11. P. 3353–3366. https://doi.org/10.1093/jxb/erv148
57. Smith J.M., Salamango D.J., Leslie M.E., Collins C.A., Heese A. Sensitivity to Flg22 is modulated by ligand-induced degradation and de novo synthesis of the endogenous flagellin-receptor FLAGELLIN-SENSING2 // Plant Physiology. 2014. Vol. 164. P. 440–454. https://doi.org/10.1104/pp.113.229179
58. Katagiri F., Tsuda K. Understanding the plant immune system // Molecular Plant-Microbe Interactions. 2010. Vol. 23. Issue 12. P. 1531–1536. https://doi.org/10.1094/MPMI-04-10-0099
59. Zhang J., Shao F., Cui H., Chen L., Li H., Zou Y., et al. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants // Cell Host Microbe. 2007. Vol. 1. Issue 3. P. 175–185. https://doi.org/10.1016/j.chom.2007.03.006
60. Macho A.P., Schwessinger B., Ntoukakis V., Brutus A., Segonzac C., Roy S., et al. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation // Science. 2014. Vol. 343. Issue 6178. P. 1509–1512. https://doi.org/10.1126/science.1248849
61. Zeng L., Velasquez A.C., Munkvold K.R., Zhang J., Martin G.B. A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB // The Plant Journal. 2012. Vol. 69. P. 92–103. https://doi.org/10.1111/j.1365-313X.2011.04773.x
62. Hemetsberger C., Herrberger C., Zechmann B., Hillmer M., Doehlemann G. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity // PLOS Pathogens. 2012. Vol. 8. e1002684. https://doi.org/10.1371/journal.ppat.1002684
63. Lukasik E., Takken F.L. STANDing strong, resistance proteins instigators of plant defence // Current Opinion in Plant Biology. 2009. Vol. 12. Issue 4. P. 427–436. https://doi.org/10.1016/j.pbi.2009.03.001
64. Kadota Y., Shirasu K., Guerois R. NLR sensors meet at the SGT1-HSP90 crossroad // Trends in Biochemical Sciences. 2010. Vol. 35. Issue 4. P. 199–207. https://doi.org/10.1016/j.tibs.2009.12.005
65. Dangl J.L., Jones J.D.G. Plant pathogens and integrated defence responses to infection // Nature. 2001. Vol. 411. P. 826–833. https://doi.org/10.1038/35081161
66. Wilton M., Subramaniam R., Elmore J., Felsensteiner C., Coaker G., Desveaux D. The type III effector HopF2 Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. Proceedings of the National Academy of Sciences of the USA. 2010. Vol. 107. Issue 5. P. 2349–2354. https://doi.org/10.1073/pnas.0904739107
67. Van der Hoorn R.A., Kamoun S. From guard to decoy: a new model for perception of plant pathogen effectors // Plant Cell. 2008. Vol. 20. P. 2009–2017. https://doi.org/10.1105/tpc.108.060194
68. Gutierrez J.R., Balmuth A.L., Ntoukakis V., Mucyn T.S., Gimenez-Ibanez S., Jones A., et al. Prf immune complexes of tomato are oligomeric and contain multiple Pto-like kinases that diversify effector recognition // The Plant Journal. 2009. Vol. 61. Issue 3. P. 507–518. https://doi.org/10.1111/j.1365-313X.2009.04078.x
69. Collier S.M., Moffett P. NB-LRRs work a “bait and switch” on pathogens // Trends in Plant Sciences. 2009. Vol. 14. Issue 10. P. 521–529. https://doi.org/10.1016/j.tplants.2009.08.001
70. Wirthmueller L., Zhang Y., Jones J.D., Parker J.E. Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense // Current Biology. 2007. Vol. 17. Issue 23. P. 2023–2029. https://doi.org/10.1016/j.cub.2007.10.042
71. Bai S., Liu J., Chang C., Zhang L., Maekawa T., Wang Q., et al. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance // PLoS Pathogens. 2012. Vol. 8. Issue 6. e1002752. https://doi.org/10.1371/journal.ppat.1002752
72. Sarris P.F., Duxbury Z., Huh S.U., Ma Y., Segonzac C., Sklenar J., et al. A plant immune receptor detects pathogen effectors that target WRKY transcription factors // Cell. 2015. Vol.161. Issue 5. P. 1089–1100. https://doi.org/10.1016/j.cell.2015.04.024
73. Mur L.A., Kenton P., Lloyd A.J., Ougham H., Prats E. The hypersensitive response: the centenary is upon us but how much do we know? // Journal of Experemental Botany. 2008. Vol. 59. Issue 3. P. 501–520. https://doi.org/10.1093/jxb/erm239
74. Jwa N.-S., Hwang B.K. Convergent evolution of pathogen effectors toward reactive oxygen species signaling networks in plants front // Frontiers in Plant Science. 2017. Vol. 8. P.1687. https://doi.org/10.3389/fpls.2017.01687
75. Le Roux C., Huet G., Jauneau A., Camborde L., Tremousaygue D., Kraut A., et al. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity // Cell. 2015. Vol. 161. Issue 5. P. 1074–1088. https://doi.org/10.1016/j.cell.2015.04.025
Рецензия
Для цитирования:
Шафикова Т.Н., Омеличкина Ю.В. Эволюция взглядов на иммунитет растений: от закона H.H. Flor «ген-на-ген» до «зигзаг модели» J. Jones и J. Dangl. Известия вузов. Прикладная химия и биотехнология. 2020;10(3):424-438. https://doi.org/10.21285/2227-2925-2020-10-3-424-438
For citation:
Shafikova T.N., Omelichkina Yu.V. Evolution of views on plant immunity: from Flor’s “gene-for-gene” theory to the “zig-zag model” developed by Jones and Dangl. Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(3):424-438. https://doi.org/10.21285/2227-2925-2020-10-3-424-438