Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

Формирование химического состава зерна яровой пшеницы при различном уровне минерального питания

https://doi.org/10.21285/2227-2925-2020-10-3-496-505

Аннотация

Зерно яровой пшеницы широко используется в качестве сырья для производства пищевых продуктов и кормов. Целью исследования являлось изучение отзывчивости яровой пшеницы на различные уровни минерального питания. В статье представлены результаты внесения минеральных удобрений под яровую пшеницу сорта Новосибирская 31 в Тюменской области. Определены: урожайность зерна яровой пшеницы, основные показатели качества зерна на пищевые цели (содержание белка, сырой клейковины, качество клейковины, стекловидность, натура), аминокислотный и элементный (N, P, K, S, Na, Mg, Ca, Cl) составы. Показано, что в зависимости от почвенных и погодных условий, а также от дозы внесения минеральные удобрения имеют неодинаковую эффективность. В 2018 г. применение минеральных удобрений позволило получить прибавку урожайности и улучшить качество зерна. Относительно варианта без внесения минеральных удобрений урожайность пшеницы повысилась на 1,6 т/га, содержание белка в зерне – на 3,67%, сырой клейковины – на 9,9%. С помощью удобрений удалось получить пшеницу 3-го класса, в то время как на контроле получена пшеница 4-го класса с меньшей урожайностью. Выявлено, что в годы с благоприятными погодными условиями на черноземе выщелоченном роль минеральных удобрений в формировании урожайности пшеницы и ее качества снижается. В 2019 г. на всех вариантах была получена пшеница 3-го класса с несущественно различающейся урожайностью. Доказано, что при повышении доз минеральных удобрений в зерне повышается содержание глутаминовой и аспарагиновой кислот, но снижается содержание аргинина. Элементный состав зерна, кроме азота, не зависит от дозы внесения удобрений.

Об авторах

Д. В. Чикишев
Государственный аграрный университет Северного Зауралья
Россия

Чикишев Дмитрий Владимирович, аспирант кафедры почвоведения и агрохимии

625003, г. Тюмень, ул. Республики, 7



Н. В. Абрамов
Государственный аграрный университет Северного Зауралья
Россия

Абрамов Николай Васильевич, д.с.-х.н., профессор, заведующий кафедрой почвоведения и агрохимии

625003, г. Тюмень, ул. Республики, 7



Н. С. Ларина
Тюменский государственный университет
Россия

Ларина Наталья Сергеевна, к.х.н., профессор кафедры органической и экологической химии

625003, г. Тюмень, ул. Володарского, 6



С. В. Шерстобитов
Государственный аграрный университет Северного Зауралья
Россия

Шерстобитов Сергей Владимирович, к.х.н., доцент кафедры почвоведения и агрохимии

625003, г. Тюмень, ул. Республики, 7



Список литературы

1. Wang X., Cai D., Grant C., Hoogmoed W.B., Oenema O. Factors controlling regional grain yield in China over the last 20 years // Agronomy for Sustainable Development. 2015. Vol. 35. P. 1127–1138. https://doi:10.1007/s13593-015-0288-z

2. Mukherjee A., Wang S.-Y.S., Promchote P. Examination of the climate factors that reduced wheat yield in Northwest India during the 2000s // Water. 2019. Vol. 11. Issue 2. P. 343–355. https://doi.org/10.3390/w11020343

3. Xue C., Matros A., Mock H.P., Mühling K.H. Protein composition and baking quality of wheat flour as affected by split nitrogen application // Frontiers in Plant Science. 2019. Vol. 10. 11 p. https://doi.org/10.3389/fpls.2019.00642

4. Zörb C., Ludewig U., Hawkesford M.J. Perspective on wheat yield and quality with reduced nitrogen supply // Trends in plant science. 2018. Vol. 23. Issue 11. P. 1029–1037. https://doi.org/10.1016/j.tplants.2018.08.012

5. Schierhorn F., Müller D., Prishchepov A., Faramarzi M., Balmann A. The potential of Russia to increase its wheat production through cropland expansion and intensification // Global Food Security. 2014. Vol. 3. Issues 3-4. P. 133–141. https://doi.org/10.1016/j.gfs.2014.10.007

6. Corrêa J.C., Grohskopf M.A., Nicoloso R. da S., Lourenço K., Martini R. Organic, organomineral, and mineral fertilizers with urease and nitrification inhibitors for wheat and corn under no-tillage // Pesquisa Agropecuária Brasileira. 2016. Vol. 51. Issue 8. P. 916–924. https://doi.org/10.1590/S0100-204X2016000800003

7. Efretuei A., Gooding M., White E., Spink J., Hackett R. Effect of nitrogen fertilizer application timing on nitrogen use efficiency and grain yield of winter wheat in Ireland // Irish Journal of Agricultural and Food Research. 2016. Vol. 55. Issue 1. P. 63–73. https://doi.org/10.1515/ijafr-2016-0006

8. Rezig F.A., Elhadi E.A., Mubarak A.R. Impact of organic residues and mineral fertilizer application on soil–crop systems I: yield and nutrients content // Archives of Agronomy and Soil Science. 2013. Vol. 59. Issue 9. P. 1229–1243. https://doi.org/10.1080/03650340.2012.709622

9. Mulvaney R.L., Khan S.A., Ellsworth T.R. Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production // Journal of Environmental Guality. 2009. Vol. 38. Issue 6. P. 2295–2314. https://doi.org/10.2134/jeq2008.0527

10. Beyenesh Z., Nigussie D. Effect of mineral fertilizer, farmyard manure, and compost on yield of bread wheat and selected soil chemical properties in Enderta District, Tigray Regional State, Northern Ethiopia // East African Journal of Sciences. 2018. Vol 12. Issue 1. P. 29–40.

11. Ma G., Liu W., Li S., Zhang P., Wang C., Lu H., et al. Determining the optimal N input to improve grain yield and quality in winter wheat with reduced apparent N loss in the North China Plain // Frontiers in Plant Science. 2019. Vol. 10. P. 181. https://doi.org/10.3389/fpls.2019.00181

12. Ullah G., Khan E.A., Awan I.U., Khan M.A., Khakwani A.A., Baloch M.S., et al. Wheat response to application methods and levels of nitrogen fertilizer: I. phenology, growth indices and protein content // Pakistan Journal of Nutrition. 2013. Vol. 12. Issue 4. P. 365–370. https://doi.org/10.3923/pjn.2013.365.370

13. Yu Z., Juhasz A., Islam S., Diepeveen D., Zhang J., Wang P., et al. Impact of mid-season sulphur deficiency on wheat nitrogen metabolism and biosynthesis of grain protein // Scientific Reports. 2018. Vol. 8. Issue 1. P. 2499. https://doi.org/10.1038/s41598-018-20935-8

14. Zhang P., Ma G., Wang C., Lu H., Li S., Xie Y., et al. Effect of irrigation and nitrogen application on grain amino acid composition and protein quality in winter wheat // Public Library of Science one. 2017. Vol. 12. Issue 6. P. e0178494. https://doi.org/10.1371/journal.pone.0178494

15. Hawkesford M.J. Reducing the reliance on nitrogen fertilizer for wheat production // Journal of Cereal Science. 2014. Vol. 59. Issue 3. P. 276–283. https://doi.org/10.1016/j.jcs.2013.12.001

16. Bogard M., Allard V., Brancourt-Hulmel M., Heumez E., Machet J.-M., Jeuffroy J.-H., et al. Deviation from the grain protein concentration–grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat // Journal of Experimental Botany. 2010. Vol. 61. Issue 15. P. 4303–4312. https://doi.org/10.1093/jxb/erq238

17. Hřivna L., Kotková B., Buresova I. Effect of sulphur fertilization on yield and quality of wheat grain // Cereal Research Communications. 2015. Vol. 1. P. 1–9. https://doi.org/10.1556/CRC.2014.0033

18. Abewa A., Adgo E., Yitaferu B., Alemayehu G., Assefa K., Solomon J.K.Q., et al. Teff grain physical and chemical quality responses to soil physicochemical properties and the environment // Agronomy. 2019. Vol. 9. Issue 6. P. 283. https://doi.org/10.3390/agronomy9060283

19. Hussain A., Larsson H., Kuktaite R., Johansson E. Mineral composition of organically grown wheat genotypes: contribution to daily minerals intake // Environmental Research and Public Health. 2010. Vol. 7. Issue 9. P. 3442–3456. https://doi.org/10.3390/ijerph7093442

20. Svecnjak Z., Jenel M., Bujan M., Vitali D., Dragojević I.V. Trace element concentrations in the grain of wheat cultivars as affected by nitrogen fertilization // Agricultural and Food Science. 2013. Vol. 22. Issue 4. P. 445–451. https://doi.org/10.23986/afsci.8230

21. Gaj R., Gorski D. Effects of different phosphorus and potassium fertilization on contents and uptake of macronutrients (N, P, K, Ca, Mg) in winter wheat I. Content of macronutrients // Journal of Central European Agriculture. 2014. Vol. 15. Issue 4. P. 169–187. https://doi.org/10.5513/JCEA01/15.4.1526

22. Suchowilska E., Wiwart M., Kandler W., Krska R. A comparison of macro- and microelement concentrations in the whole grain of four Triticum species // Plant, Soil and Environment. 2012. Vol. 58. P. 141–147. https://doi.org/10.17221/688/2011-PSE

23. Kovačević V., Kadar I., Rastija M., Sudar R. Impacts of NPK fertilization on chemical composition of wheat grain. In: Proceedings of the 48th Croatian and 8th International Symposium on Agriculture. 2013. P. 510–514.

24. Shoup F.K., Pomeranz Y., Deyoe C.W. Amino acid composition of wheat varieties and flours varying widely in bread-making potentialities // Journal of Food Science. 1966. Vol. 31. Issue 1. P. 94–101. https://doi.org/10.1111/j.1365-2621.1966.tb15420.x

25. Mosse J., Huet J.C., Baudet J. The amino acid composition of wheat grain as a function of nitrogen content // Journal of Cereal Science. 1985. Vol. 3. Issue 2. P. 115–130. https://doi.org/10.1016/S0733-5210(85)80022-9

26. Baudet J., Huet J.-C., Mossé J. The amino acid composition of wheat grain as related to its protein content // Amino Acid Composition and Biological Value of Cereal Proteins. 1985. P. 439–450.

27. Чикишев Д.В., Абрамов Н.В., Ларина Н.С., Шерстобитов С.В. Влияние азотных удобрений на аминокислотный состав зерна яровой пшеницы // Вестник Башкирского государственного аграрного университета. 2019. N 3 (51). С. 20–25. https://doi.org/10.31563/1684-7628-2019-51-3-20-26

28. Joy W.K. Ammonia, glutamine and asparagine: A carbon-nitrogen interface // Canadian Journal of Botany. 1988. Vol. 66. Issue 10. P. 2103–2109. https://doi.org/10.1139/b88-288

29. Shewry P.R., Tatham A. The prolamin storage proteins of cereal seeds: structure and evolution // The Biochemical Journal. 1990. Vol. 267. P. 1–12. https://doi.org/10.1042/bj2670001

30. Winter G., Todd C.D., Trovato M., Forlani G., Funck D. Physiological implications of arginine metabolism in plants // Frontiers in Plant Science. 2015. Vol. 6. P. 00534. https://doi.org/10.3389/fpls.2015.00534

31. Семизоров С.А., Гунгер М.В. Влияние различных норм припосевного внесения аммиачной селитры на урожайность яровой пшеницы // Вестник Мичуринского государственного аграрного университета. 2018. N 4. С. 85–88.

32. Богомазов С.В., Левин А.А., Ткачук О.А., Лянденбурская А.В. Урожайность и качество зерна яровой мягкой пшеницы в зависимости от применения гуминового и минеральных удобрений // Нива Поволжья. 2019. N 3 (52). C. 68–73.

33. Синявский И.В., Еликбаева С.А. Влияние сочетаний органических и минеральных удобрений на урожайность и качество зерна яровой пшеницы в звене зернопарового севооборота // Вестник Курганской ГСХА. 2019. N 2 (30). С. 34–37.

34. Sherstobitov S. The results of the differential mineral fertilization in the automatic mode according to the task map // IOP Conference Series: Materials Science and Engineering. 2019. Vol. 537. Issue 6. P. 062011. https://doi.org/10.1088/1757-899X/537/6/062011


Рецензия

Для цитирования:


Чикишев Д.В., Абрамов Н.В., Ларина Н.С., Шерстобитов С.В. Формирование химического состава зерна яровой пшеницы при различном уровне минерального питания. Известия вузов. Прикладная химия и биотехнология. 2020;10(3):496-505. https://doi.org/10.21285/2227-2925-2020-10-3-496-505

For citation:


Chikishev D.V., Abramov N.V., Larina N.S., Sherstobitov S.V. Chemical composition of spring wheat at different levels of mineral nutrition. Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(3):496-505. (In Russ.) https://doi.org/10.21285/2227-2925-2020-10-3-496-505

Просмотров: 693


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)