Сравнение действия озона и постоянного электрического поля на морфофизиологические характеристики проростков томата (Solanum lycopersicum L.) и пшеницы (Triticum aestivum L.)
https://doi.org/10.21285/2227-2925-2022-12-1-87-96
Аннотация
Целью работы являлось изучение влияния озона и постоянного электрического поля на морфофизиологические характеристики проростков томата и пшеницы с целью создания эффективной и экологически безопасной технологии повышения ростового потенциала семян сельскохозяйственных культур. Обработку семян томата (Solanum lycopersicum L.) сорта Вентура и мягкой озимой пшеницы (Triticum aestivum L.) сорта Иркутская проводили в течение 15 и 30 мин: при воздействии озона в дозах 1, 3 и 5 г/м3 и электрического поля при напряженности 1,6 и 2 кВ/см. Как озон, так и постоянное электрическое поле расширяют разброс данных по длине побега и корня, а также изменяют энергию прорастания семян. Выявлено, что в зависимости от концентрации озона и степени воздействия электрическим полем влияние обработки семян может быть как положительным, так и отрицательным. Лучший режим при озонировании семян томата достигался при обработке озоном в концентрации 5 г/м3 в течение 15 мин. Оптимальный режим воздействия электрического поля на семена томата – 1,6 кВ/см в течение 15 мин. Обнаружено, что пшеница реагирует на обработку не так интенсивно, как томат. В случае обработки семян пшеницы более предпочтительным является озонирование, обеспечивающее стимуляцию прорастания уже при воздействии 1 г/м3 озона продолжительностью 15 мин. Результаты экспериментов также показывают, что даже небольшие изменения режима воздействия как при выдержке в электрическом поле, так и при озонировании могут привести к повреждению семян, выраженному не только в ингибировании развития, но и в снижении энергии прорастания семян.
Ключевые слова
Об авторах
В. Н. НурминскийРоссия
В. Н. Нурминский, к.б.н., старший научный сотрудник
664033, г. Иркутск, ул. Лермонтова, 132,
А. В. Лазукин
Россия
А. В. Лазукин, инженер
111250, г. Москва, ул. Красноказарменная, 14
С. В. Гундарева
Россия
С. В. Гундарева, младший научный сотрудник
111250, г. Москва, ул. Красноказарменная, 14
А. С. Столбиков
Россия
А. С. Столбиков, к.б.н., старший научный сотрудник
664033, г. Иркутск, ул. Лермонтова, 132; 664003, г. Иркутск, ул. К. Маркса, 1
А. В. Третьякова
Россия
А. В. Третьякова, к.б.н., доцент
664025, г. Иркутск, ул. Сухэ-Батора, 5
Список литературы
1. Тихонова О. С., Фатыхов И. Ш. Влияние нормы высева семян на качество зерна озимых зерновых культур в Среднем Предуралье // Вестник Башкирского государственного аграрного университета. 2012. N 4 (24). С. 14–16.
2. Торопова Е. Ю., Захаров А. Ф. Предпосевная подготовка семян яровой пшеницы в условиях ресурсосберегающих технологий // Защита и карантин растений. 2017. N 3. С. 28–31.
3. Khadeeva N. V., Yakovleva E. Yu., Sydoruk K. V., Korostyleva T. V., Istomina E. A., Dunaevsky Ya. E., et al. Molecular genetic analysis of collection of transgenic tobacco plants with buckwheat serine proteases inhibitor gene during long-term subculture // Russian Journal of Genetics. 2017. Vol. 53, no. 11. P. 1200– 1210. https://doi.org/10.1134/S1022795417110047.
4. Aladjadjiyan A. Physical factors for plant growth stimulation improve food quality. In: A. Aladjadjiyan (ed.). Food production – approaches, challenges and tasks. Chapter 9. Rijeka: In Tech Publishing, 2012. P. 145–168. https://doi.org/10.5772/32039.
5. Rifna E. J., Ramanan K. R., Mahendran R. Emerging technology applications for improving seed germination // Trends in Food Science & Technology. 2019. Vol. 86. P. 95–108. https:// doi.org/10.1016/j.tifs.2019.02.029.
6. Krivov S. A., Lazukin A. V., Serdyukov Y. A., Gundareva S. V., Romanov G. A. Effect of constant high-voltage electric field on wheat seed germination // IOP SciNotes. 2020. Vol. 1, no. 2. P. 024002. https://doi.org/10.1088/2633-1357/aba1f6.
7. Avdeeva V., Zorina E., Bezgina J., Kolosova O. Influence of ozone on germination and germinating energy of winter wheat seeds // Engineering for Rural Development: 17th International Scientific Conference. 23–25 May 2018, Jelgava, Latvia. 2018. P. 543–546. https://doi.org/10.22616/ERDev2018.17.N128.
8. Hayashi N., Ono R., Nakano R., Shiratani M., Tashiro K., Kuhara S., et al. DNA microarray analysis of plant seeds irradiated by active oxygen species in oxygen plasma // Plasma Medicine. 2016. Vol. 6, no. 3-4. P. 459–471. https://doi.org/10.1615/ PlasmaMed.2016018933.
9. Mittler R. Oxidative stress, antioxidants and stress tolerance // Trends in Plant Science. 2002. Vol. 7, no. 9. P. 405–410. https://doi.org/10.1016/ s1360-1385(02)02312-9.
10. Gill S. S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants // Plant Physiology and Biochemistry. 2010. Vol. 48, no. 12. P. 909–930. https://doi.org/10. 1016/j.plaphy.2010.08.016.
11. Henselová M., Slováková Ľ., Martinka M., Zahoranová A. Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma // Biologia. 2012. Vol. 67, no. 3. P. 490–497. https://doi.org/10. 2478/s11756-012-0046-5.
12. Stolárik T., Henselová M., Martinka M., Novák O., Zahoranová A., Černák M. Effect of lowtemperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.) // Plasma Chemistry and Plasma Processing. 2015. Vol. 35, no. 4. P. 659–676. https:// doi.org/10.1007/s11090-015-9627-8.
13. Hayashi N., Ono R., Shiratani M., Yonesu A. Antioxidative activity and growth regulation of Brassicaceae induced by oxygen radical irradiation // Japanese Journal of Applied Physics. 2015. Vol. 54, no. 6. Article number 06GD01. https://doi.org/10. 7567/JJAP.54.06GD01.
14. Los A., Ziuzina D., Boehm D., Cullen P. J., Bourke P. Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: Effects on seed surface chemistry and characteristics // Plasma Processes and Polymers. 2019. Vol. 16, no. 4. Article number 1800148. https://doi.org/10.1002/ppap.201800148.
15. Roy N. C., Hasan M. M., Kabir A. H., Reza M. A., Talukder M. R., Chowdhury A. N. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat // Plasma Science and Technology. 2018. Vol. 20, no. 11. Article number 115501. https://doi.org/10.1088/ 2058-6272/aac647.
16. Bourke P., Ziuzina D., Boehm D., Cullen P. J., Keener K. The potential of cold plasma for safe and sustainable food production // Trends in Biotechnology. 2018. Vol. 36, no. 6. P. 615–626. https://doi. org/10.1016/j.tibtech.2017.11.001.
17. Šerá B., Šerý M. Non-thermal plasma treatment as a new biotechnology in relation to seeds, dry fruits, and grains // Plasma Science and Technology. 2018. Vol. 20, no. 4. Article number 044012. https://doi.org/10.1088/2058-6272/aaacc6.
18. Liu B., Honnorat B., Yang H., Arancibia J., Rajjou L., Rousseau A. Non-thermal DBD plasma array on seed germination of different plant species // Journal of Physics D: Applied Physics. 2018. Vol. 52, no. 2. Article number 025401. https://doi.org/10. 1088/1361-6463/aae771.
19. Van Eck J., Kirk D. D., Walmsley A. M. Tomato (Lycopersicum esculentum) // Methods in Molecular Biology book series. 2006. Vol. 343. P. 459– 473. https://doi:10.1385/1-59745-130-4:459.
20. Măgureanu M., Sîrbu R., Dobrin D., Gîdea M. Stimulation of the germination and early growth of tomato seeds by non-thermal plasma // Plasma Chemistry and Plasma Processing. 2018. Vol. 38. P. 989– 1001. https://doi.org/10.1007/s11090-018-9916-0
Рецензия
Для цитирования:
Нурминский В.Н., Лазукин А.В., Гундарева С.В., Столбиков А.С., Третьякова А.В. Сравнение действия озона и постоянного электрического поля на морфофизиологические характеристики проростков томата (Solanum lycopersicum L.) и пшеницы (Triticum aestivum L.). Известия вузов. Прикладная химия и биотехнология. 2022;12(1):87-96. https://doi.org/10.21285/2227-2925-2022-12-1-87-96
For citation:
Nurminsky V.N., Lazukin A.V., Gundareva S.V., Stolbikov A.S., Tretyakova A.V. Comparison of the effect produced by ozone and constant electric field on the morphophysiological characteristics of tomato (Solanum lycopersicum L.) and wheat (Triticum aestivum L.) seedlings. Proceedings of Universities. Applied Chemistry and Biotechnology. 2022;12(1):87-96. (In Russ.) https://doi.org/10.21285/2227-2925-2022-12-1-87-96