Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

Влияние акрилатных гидрогелей на основные параметры культивирования и антагонистическую активность агрономически полезных бактерий

https://doi.org/10.21285/2227-2925-2023-13-1-88-98

Аннотация

Целью работы являлось исследование влияния полимерных акрилатных гидрогелей на рост и развитие агрономически полезной микрофлоры - штаммов азотфиксаторов, фосфатмобилизаторов, энтомопатогенов и антагонистов фитопатогенов. Антибактериальное действие гидрогелей изучали методом лунок в чашках Петри по Й. Сэги. Культивирование бактерий проводили в ГРМ-бульоне, определение оптической плотности среды осуществляли при 600 нм с периодичностью 1 ч в течение 48 ч. Исследование биопленкообразования вели на среде LB согласно методу O'Toole, Kolter (1998). В стерильную среду вносили образцы гидрогелей в концентрации 200; 100; 50; 25 и 12,5 мг/мл. Установлено, что штаммы Paenibacillus polymyxa П, Agrobacterium tumefacience 204 и энтомопатогены Bacillus thuringiensis 0271, B. thuringiensis 0371 не проявляют признаков угнетения в зоне взаимодействия как с эталонными, так и с экспериментальными гидрогелями, а рост культур штаммов Azotobacter vinelandii 10702, Bradyrhizobium ottawaense М-8 и Rhizobium leguminosarum К-29 был ингибирован во всех вариантах опыта. Исследованные суспензии гидрогелей ГГ1 и ГГ2 в концентрации 200 мг/мл способствовали уменьшению оптической плотности культур как штамма B. amyloliquefaciens 01-1, так и штамма Lelliottia nimipressurales 32-3 в среднем на 23,3 и 14,7% к контролю соответственно. Внесение в питательную среду 25-100 мг/мл ГГ2 способствует активному накоплению биомассы культурами P. polymyxa П и A. tumefacience 204. Гидрогели способствовали усилению биопленкообразования B. amyloliquefaciens 01-1 в концентрации 50-200 мг/мл (ГГ1) и 100-200 мг/мл (ГГ2). Максимальную стимуляцию образования планктонной культуры и биопленки наблюдали при обогащении питательной среды 12,5-100 мг/мл ГГ1 у культуры штамма P. polymyxa П, выражавшуюся в увеличении интенсивности прироста бактериальной суспензии в среднем в 8,9 раз к контролю.

Об авторах

А. В. Крыжко
Севастопольский государственный университет; Научно-исследовательский институт сельского хозяйства Крыма
Россия

Крыжко Анастасия Владимировна - кандидат сельскохозяйственных наук, ведущий научный сотрудник лаборатории молекулярной генетики, протеомики и биоинформатики в сельском хозяйстве НИИСХ Крыма.

295453, Симферополь, ул. Киевская, 150



С. В. Дидович
Севастопольский государственный университет; Научно-исследовательский институт сельского хозяйства Крыма
Россия

Дидович Светлана Витальевна - кандидат сельскохозяйственных наук, ведущий научный сотрудник НИИСХ Крыма.

295453, Симферополь, ул. Киевская, 150



А. В. Сорокин
Севастопольский государственный университет; Воронежский государственный университет инженерных технологий; Воронежский государственный университет
Россия

Сорокин Андрей Викторович - младший научный сотрудник лаборатории метагеномики и пищевых биотехнологий, ВГУИТ; младший научный сотрудник кафедры биофизики и биотехнологии, ВГУ; младший научный сотрудник НИЛ «Биоресурсный потенциал приморской территории», СевГУ.

394036, Воронеж, пр. Революции, 19; 394018, Воронеж, Университетская пл., 1; 299053, Севастополь, ул. Студенческая, 33



М. С. Лавлинская
Севастопольский государственный университет; Воронежский государственный университет инженерных технологий; Воронежский государственный университет
Россия

Лавлинская Мария Сергеевна - старший научный сотрудник лаборатории метагеномики и пищевых биотехнологий, ВГУИТ; старший научный сотрудник кафедры биофизики и биотехнологии, ВГУ; старший научный сотрудник НИЛ «Биоресурсный потенциал приморской территории», СевГУ.

394036, Воронеж, пр. Революции, 19, Российская Федерация; 394018, Воронеж, Университетская пл., 1; 299053, Севастополь, ул. Студенческая, 33



Список литературы

1. Rodrigues S.H., Lima I.S., Neris L.M.L., Silva A.S., Santos N., Ariane M.S., et al. Superabsorbent hydrogels based to polyacrylamide/cashew tree gum for the controlled release of water and plant nutrients // Molecules. 2021. Vol. 26, no. 9. P. 119-128. https://doi.org/10.3390/molecules26092680.

2. Sabyasachi B., Prakash M. Superabsorbent polymers in agriculture and other applications: a review // Polymer-Plastics Technology and Materials. 2019. Vol. 59, no. 6. P. 1-16. http://dx.doi.org/10.1080/25740881.2019.1647239.

3. Рабаданов Р.Г. Абсорбционные свойства сильно набухающих полимерных гидрогелей, используемых в сельском хозяйстве // Аграрная Россия. 2017. N 6. С. 2-7. http://dx.doi.org/10.30906/1999-5636-2017-6-15-18.

4. Rizwan M., Rubina G.S., Iqbal D.A., Naseem S. Materials diversity of hydrogel: synthesis, polymerization process and soil conditioning properties in agricultural field // Journal of Advanced Research. 2021. Vol. 33. P. 15-40. http://doi.org/10.1016/j.jare.2021.03.007.

5. Наумов П.В., Щербакова Л.Ф., Околелова А.А. Оптимизация влагообеспеченности почв с помощью полимерных гидрогелей // Известия Нижневолжского агроуниверситетского комплекса: наука и высшее профессиональное образование. 2011. N 4. С. 77-81.

6. Guilherme M.R., Aouada F.A., Fajardo A.R., Martins A.F., Paulino A.T., Davi M.F.T., et al. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review // European Polymer Journal. 2015. Vol. 72. P. 365-385. https://doi.org/10.1016/j.eur-polymj.2015.04.017.

7. Mehrotra T., Zaman M.N., Prasad B.B., Shukla A., Aggarwal S., Singh R. Rapid immobilization of viable Bacillus pseudomycoides in polyvinyl alcohol/glutaral-dehyde hydrogel for biological treatment of municipal wastewater // Environmental Science and Pollution Research. 2020. Vol. 27, no. 9. P. 9167-9180. https://doi.org/10.1007/s11356-019-07296-z.

8. Du X., Zhou J., Shi J., Xu B. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials // Chemical Reviews. 2015. Vol. 115, no. 24. P. 13165-13307. https://doi.org/10.1021/acs.chemrev.5b00299.

9. Lipowczan A., Trochimczuk A.W. Phosphates-containing interpenetrating polymer networks (IPNs) acting as slow release fertilizer hydrogels (SRFHs) suitable for agricultural applications // Materials. 2021. Vol. 14, no. 11. P. 2893. https://doi.org/10.3390/ma14112893.

10. Abd El-Aziz M.E., Morsi S.M.M., Salama D.M., Abdel-Aziz M.S., Abd Elwahed M.S., Shaaban E.A., et al. Preparation and characterization of chitosan/polyacryl-ic acid/copper nanocomposites and their impact on onion production // International Journal of Biological Macromolecules. 2019. Vol. 123. P. 856-865. https://doi.org/10.1016/j.ijbiomac.2018.11.155.

11. AllcockH.R.,Pucher S.R., Fitzpatrick R.J., RashidK. Antibacterial activity and mutagenicity studies of water-soluble phosphazene high polymers // Biomaterials. 1992. Vol. 13, no. 12. P. 857-862. https://doi.org/0142-9612(92)90179-R.

12. Praepanitchai O.A., Noomhorm A., Anal A.K. Survival and behavior of encapsulated probiotics (Lactobacillus plantarum) in calcium-alginate-soy protein isolate-based hydrogel beads in different processing conditions (pH and temperature) and in pasteurized mango juice // BioMed Research International. 2019. P. 9768152. https://doi.org/10.1155/2019/9768152.

13. Inal M., Yigitoglu M. Improvement of bioethanol productivity of immobilized Saccharomyces bayanus with using sodium alginate-graft-poly(N-vinyl-2-pyrro-lidone) matrix // Biotechnology and Applied Biochemistry. 2012. Vol. 168, no. 2. P. 266-278. https://doi.org/10.1007/s12010-012-9770-0.

14. Rosenberg M., Rebros M., Kristofikova L., Malatova K. High temperature lactic acid production by Bacillus coagulans immobilized in LentiKats // Biotechnology Letters. 2005. Vol. 27, no. 23-24. P. 1943-1947. https://doi.org/10.1007/s10529-005-3907-y.

15. Yang K., Han Q., Chen B., Zheng Y., Zhang K., Li Q., et al. Antimicrobial hydrogels: promising materials for medical application // International Journal of Nanomedicine. 2018. Vol. 13. P. 2217-2263. https://doi.org/10.2147/IJN.S154748.

16. Spagnul C., Greenman J., Wainwright M., Kamil Z., Boyle R.W. Synthesis, characterization and biological evaluation of a new photoactive hydrogel against gram-positive and gram-negative bacteria // Journal of Materials Chemistry B. 2016. Vol. 4, no. 8. P. 1499-1509. https://doi.org/10.1039/C5TB02569A.

17. Smith M.J., Francis M.B. Methods for generating microbial cocultures that grow in the absence of fixed carbon or nitrogen // Methods in Molecular Biology. 2018. Vol. 1772. P. 45-60.

18. Grumezescu A.M., Holban A.M. Materials for biomedical engineering. Hydrogels and polymer-based scaffolds. Amsterdam: Elsevier, 2019. 562 p.

19. Kretschmer M., Lieleg O. Chelate chemistry governs ion-specific stiffening of Bacillus subtilis B-1 and Azotobacter vinelandii biofilms // Biomaterials Science. 2020. Vol. 8, no. 7. P. 1923-1933. https://doi.org/10.1039/C9BM01763A.

20. Snigdha S., Kalarikkal N., Thomas S., Rad-hakrishnan E.K. Laponite clay/poly(ethylene oxide) gel beads for delivery of plant growth-promoting rhizobacteria // Bulletin of Materials Science. 2021. Vol. 44, no. 2. P. 215-228. https://doi.org/10.1007/s12034-021-02383-9.

21. Лавлинская М.С., Сорокин А.В. Разработка технологии получения суперабсорбента на основе отходов растениеводства // Материалы китайско-российского конкурса инноваций и предпринимательства - 2020. Воронеж, 2021. С. 34-37.

22. Сэги Й. Методы почвенной микробиологии / пер. с венг. И.Ф. Куренного. М.: Колос, 1983. 296 с.

23. Анганова Е.В., Савилов Е.Д., Ушкарева О.А., Аблов А.М., Духанина А.В. Способность патогенных и условнопатогенных энтеробактерий к формированию биопленок // Acta Biomedica Scientifica. 2014. N 5. С. 34-37.

24. Савилов Е.Д., Маркова Ю.А., Немченко У.М., Носкова О.А., Чемезова Н.Н., Кунгурцева Е.А. [и др.]. Способность к биопленкообразованию у возбудителей инфекций, выделенных от пациентов крупного многопрофильного детского стационара // Тихоокеанский медицинский журнал. 2020. Т. 1. С. 32-35.

25. O'Toole G.A., Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis // Molecular Microbiology. 1998. Vol. 28, no. 3. P. 449-461. https://doi.org/10.1046/j.1365-2958.1998.00797.x.

26. Ярец Ю.И., Шевченко Н.И. Новый метод анализа бактериальной биопленки // Наука и инновации. 2016. Т. 10. С. 64-68.

27. Christensen G.D., Simpson W.A., Younger J.J., Baddour L.M., Barrett F.F., Melton D.M., et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of Staphylococci to medical devices // Journal of Clinical Microbiology. 1985. Vol. 22, no. 6. P. 996-1006.

28. Хайлафян А.А. Современные статистические методы медицинских исследований. М.: ЛЕНАРД, 2014. 320 с.

29. Luke D.A. A User's guide to network analysis in R. Springer, 2015. P. 94-95. https://doi.org/10.1007/978-3-319-23883-8_2.


Рецензия

Для цитирования:


Крыжко А.В., Дидович С.В., Сорокин А.В., Лавлинская М.С. Влияние акрилатных гидрогелей на основные параметры культивирования и антагонистическую активность агрономически полезных бактерий. Известия вузов. Прикладная химия и биотехнология. 2023;13(1):88-98. https://doi.org/10.21285/2227-2925-2023-13-1-88-98

For citation:


Kryzhko A.V., Didovich S.V., Sorokin A.V., Lavlinskaya M.S. Effect of acrylate-based hydrogels on basic cultivation parameters and antagonistic activity of soil beneficial bacteria. Proceedings of Universities. Applied Chemistry and Biotechnology. 2023;13(1):88-98. (In Russ.) https://doi.org/10.21285/2227-2925-2023-13-1-88-98

Просмотров: 224


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)