Effect of acrylate-based hydrogels on basic cultivation parameters and antagonistic activity of soil beneficial bacteria
https://doi.org/10.21285/2227-2925-2023-13-1-88-98
Abstract
We study the effect of polymeric acrylate-based hydrogels on the growth and development of soil beneficial microflora, including nitrogen-fixing and phosphate-mobilizing microorganisms, entomopathogens and phytopathogen antagonists. The antibacterial effect of hydrogels (HG) was studied by the volume displacement method in Petri dishes according to Ye. Sagi. Bacteria were cultured in GRM broth; the optical density of the medium was determined at 600 nm at 1 h intervals for 48 h. The process of biofilm formation was studied in LB medium according to the method of O'Toole and Kolter (1998). HG samples were added to sterile medium at concentrations of 200, 100, 50, 25 and 12.5 mg/ml. The Paenibacillus polymyxa P and Agrobacterium tumefacience 204 strains, as well as the Bacillus thuringiensis 0271 and B. thuringiensis 0371 entomopathogens, showed no signs of inhibition in the interaction zone with both control and experimental HG. At the same time, the culture growth of the Azotobacter vinelandii 10702, Bradyrhizobium ottawaense M-8 and Rhizobium leguminosarum K-29 strains was inhibited in all the experiment variants. The investigated hydrogel suspensions HG1 and HG2 at a concentration of 200 mg/ml contributed to a decrease in the optical density of cultures of both B. amyloliquefaciens 01-1 and Lelliottia nimipressurales 32-3 by on average 23.3 and 14.7%, respectively, compared to the control. Introduction of HG2 into a nutrient medium in the amount of 25-100 mg/ml promoted active accumulation of biomass by P. polymyxa P and A. tumefacience 204. The HG1 and HG2 hydrogels at concentrations of 50-200 mg/ml and 100-200 mg/ml, respectively, enhanced the biofilm formation of B. amyloliquefaciens 01-1. The maximum stimulation of plankton culture and biofilm formation was observed when the P. polymyxa P strain culture was enriched with 12.5-100 mg/ml of HG1, which increased the intensity of bacterial suspension growth by on average 8.9 times compared to the control.
About the Authors
A. V. KryzhkoRussian Federation
Anastasiia V. Kryzhko - Cand. Sci. (Agriculture), Leading Researcher, Laboratory of Molecular Genetics, Proteomics and Bioinformatics in Agriculture, Research Institute of Agriculture of Crimea.
150, Kievskaya St., Simferopol, 295453
S. V. Didovich
Russian Federation
Svetlana V. Didovich - Cand. Sc. (Agriculture), Leading Researcher, Research Institute of Agriculture of Crimea.
150, Kievskaya St., Simferopol, 295493
A. V. Sorokin
Russian Federation
Andrey V. Sorokin - Junior Researcher, Metagenomics and Food Biotechnologies Laboratory, Voronezh State University of Engineering Technologies; Junior Researcher, Biophysics and Biotechnology Department, Voronezh State University; Junior Researcher, Bioresource Potential of the Seaside Territory Laboratory, Sevastopol State University.
19, Revolutsii Ave., Voronezh, 394036; 1, Universitetskaya Sq., Voronezh, 394018; 33, Studencheskaya St., Sevastopol, 299053
M. S. Lavlinskaya
Russian Federation
Maria S. Lavlinskaya - Senior Researcher, Metagenomics and Food Biotechnologies Laboratory, Voronezh State University of Engineering Technologies; Senior Researcher, Biophysics and Biotechnology Department, Voronezh State University; Senior Researcher, Bioresource Potential of the Seaside Territory Laboratory, Sevastopol State University.
19, Revolutsii Ave., Voronezh, 394036; 1, Universitetskaya Sq., Voronezh, 394018; 33, Studencheskaya St., Sevastopol, 299053
References
1. Rodrigues S.H., Lima I.S., Neris L.M.L., Silva A.S., Santos N., Ariane M.S., et al. Superabsorbent hydrogels based to polyacrylamide/cashew tree gum for the controlled release of water and plant nutrients. Molecules. 2021;26(9):119-128. https://doi.org/10.3390/molecules26092680.
2. Sabyasachi B., Prakash M. Superabsorbent polymers in agriculture and other applications: a review. Polymer-Plastics Technology and Materials. 2019;59(6):1-16. http://dx.doi.org/10.1080/25740881.2019.1647239.
3. Rabadanov R.G. Absorption properties of higly swelling polymeric hydrogels used in agriculture. Agrarnaya Rossiya. 2017;(6):2-7. (In Russian). http://dx.doi.org/10.30906/1999-5636-2017-6-15-18.
4. Rizwan M., Rubina G.S., Iqbal D.A., Naseem S. Materials diversity of hydrogel: synthesis, polymerization process and soil conditioning properties in agricultural field. Journal of Advanced Research. 2021;33:15-40. http://doi.org/10.1016/j.jare.2021.03.007.
5. Naumov P.V., Shcherbakova L.F., Okolelova A.A. Soil moisture optimization using polymer hydrogels. Izvestiya nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie = Proceedings of Lower Volga Agro-University Complex: Science and Higher Education. 2011;(4):77-81. (In Russian).
6. Guilherme M.R., Aouada F.A., Fajardo A.R., Martins A.F., Paulino A.T., Davi M.F.T., et al. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. European Polymer Journal. 2015;72:365-385. https://doi.org/10.1016/j.eurpolymj.2015.04.017.
7. Mehrotra T., Zaman M.N., Prasad B.B., Shukla A., Aggarwal S., Singh R. Rapid immobilization of viable Bacillus pseudomycoides in polyvinyl alcohol/glutar-aldehyde hydrogel for biological treatment of municipal wastewater. Environmental Science and Pollution Research. 2020;27(9):9167-9180. https://doi.org/10.1007/s11356-019-07296-z.
8. Du X., Zhou J., Shi J., Xu B. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chemical Reviews. 2015;115(24):13165-13307. https://doi.org/10.1021/acs.chemrev.5b00299.
9. Lipowczan A., Trochimczuk A.W. Phosphates-containing interpenetrating polymer networks (IPNs) acting as slow release fertilizer hydrogels (SRFHs) suitable for agricultural applications. Materials. 2021;14(11):2893. https://doi.org/10.3390/ma14112893.
10. Abd El-Aziz M.E., Morsi S.M.M., Salama D.M., Abdel-Aziz M.S., Abd Elwahed M.S., Shaaban E.A., et al. Preparation and characterization of chitosan/poly-acrylic acid/copper nanocomposites and their impact on onion production. International Journal of Biological Macromolecules. 2019;123:856-865. https://doi.org/10.1016/j.ijbiomac.2018.11.155.
11. Allcock H.R., Pucher S.R., Fitzpatrick R.J., Rashid K. Antibacterial activity and mutagenicity studies of water-soluble phosphazene high polymers. Biomaterials. 1992;13(12):857-862. https://doi.org/0142-9612(92)90179-R.
12. Praepanitchai O.A., Noomhorm A., Anal A.K. Survival and behavior of encapsulated probiotics (Lactobacillus plantarum) in calcium-alginate-soy protein isolate-based hydrogel beads in different processing conditions (pH and temperature) and in pasteurized mango juice. BioMed Research International. 2019:9768152. https://doi.org/10.1155/2019/9768152.
13. Inal M., Yigitoglu M. Improvement of bioethanol productivity of immobilized Saccharomyces bayanus with using sodium alginate-graft-poly(N-vinyl-2-pyrro-lidone) matrix. Biotechnology and Applied Biochemistry. 2012;168(2):266-278. https://doi.org/10.1007/s12010-012-9770-0.
14. Rosenberg M., Rebros M., Kristofikova L., Malatova K. High temperature lactic acid production by Bacillus coagulans immobilized in LentiKats. Biotechnology Letters. 2005;27(23-24):1943-1947. https://doi.org/10.1007/s10529-005-3907-y.
15. Yang K., Han Q., Chen B., Zheng Y., Zhang K., Li Q., et al. Antimicrobial hydrogels: promising materials for medical application. International Journal of Nanomedicine. 2018;13:2217-2263. https://doi.org/10.2147/IJN.S154748.
16. Spagnul C., Greenman J., Wainwright M., Kamil Z., Boyle R.W. Synthesis, characterization and biological evaluation of a new photoactive hydrogel against gram-positive and gram-negative bacteria. Journal of Materials Chemistry B. 2016;4(8):1499-1509. https://doi.org/10.1039/C5TB02569A.
17. Smith M.J., Francis M.B. Methods for generating microbial cocultures that grow in the absence of fixed carbon or nitrogen. Methods in Molecular Biology. 2018;1772:4560.
18. Grumezescu A.M., Holban A.M. Materials for biomedical engineering. Hydrogels and polymer-based scaffolds. Amsterdam: Elsevier; 2019. 562 p.
19. Kretschmer M., Lieleg O. Chelate chemistry governs ion-specific stiffening of Bacillus subtilis B-1 and Azotobacter vinelandii biofilms. Biomaterials Science. 2020;8(7):1923-1933. https://doi.org/10.1039/C9B-M01763A.
20. Snigdha S., Kalarikkal N., Thomas S., Radhakrishnan E.K. Laponite clay/poly(ethylene oxide) gel beads for delivery of plant growth-promoting rhizobacteria. Bulletin of Materials Science. 2021;44(2):215-228.
21. Lavlinskaya M.S., Sorokin A.V. Development of technology for obtaining superabsorbent based on crop waste. Materialy kitaisko-rossiiskogo konkursa innovat-sii i predprinimatel’stva - 2020 = Materials of the Chinese-Russian Innovation and Entrepreneurship Competition - 2020. Voronezh, 2021; p. 34-37. (In Russian).
22. Szegi J. Talajmikrobiologial vizsgalati modszerek; 1979. (Russ. ed.: Segi I. Metody pochvennoi mikrobiologii. Moscow: Kolos; 1983. 296 p.). (In Russian).
23. Anganova E.V., Savilov E.D., Ushkareva O.A., Ablov A.M., Dukhanina A.V. The ability of pathogenic and opportunistic enterobacteria to form biofilms. Acta Biomedica Scientifica. 2014;(5):34-37.
24. Savilov E.D., Markova Y.A., Nemchenko U.M., Noskova O.A., Chemezova N.N., Kungurtseva E.A., et al. The ability to biofilm formation in pathogens isolated from patients of a large multidisciplinary children's hospital. Tikhookeanskii meditsinskii zhurnal = Pacific Medical Journal. 2020;1:32-35. (In Russian).
25. O'Toole G.A., Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Molecular Microbiology. 1998;28(3):449-461. https://doi.org/10.1046/j.1365-2958.1998.00797.x.
26. Yarets Yu.I., Shauchenka N.I. A new method for the bacterial biofilms analysis in medicine. Nauka i innovatsii. 2016;10:64-68. (In Russian).
27. Christensen G.D., Simpson W.A., Younger J.J., Baddour L.M., Barrett F.F., Melton D.M., et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of Staphylococci to medical devices. Journal of Clinical Microbiology. 1985;22(6):996-1006.
28. Khailafyan A.A. Modern statistical methods of medical research. Moscow: LENARD; 2014. 320 p. (In Russian).
29. Luke D.A. A User's guide to network analysis in R. Springer; 2015, p. 94-95. https://doi.org/10.1007/978-3-319-23883-8_2.
Review
For citations:
Kryzhko A.V., Didovich S.V., Sorokin A.V., Lavlinskaya M.S. Effect of acrylate-based hydrogels on basic cultivation parameters and antagonistic activity of soil beneficial bacteria. Proceedings of Universities. Applied Chemistry and Biotechnology. 2023;13(1):88-98. (In Russ.) https://doi.org/10.21285/2227-2925-2023-13-1-88-98