Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

Влияние гумусовых кислот низинного торфа на ремедиационные свойства растений пшеницы при комплексном загрязнении тяжелыми металлами

https://doi.org/10.21285/2227-2925-2021-11-2-228-235

Аннотация

Фиторемедиация является перспективной технологией очистки почвы и воды от тяжелых металлов. Несмотря на свидетельства повышения накопления тяжелых металлов культурными растениями под влиянием природных комплексообразователей - гумусовых кислот, их эффективность в фиторемедиации остается малоизученной. В связи с этим цель настоящей работы состояла в выяснении особенностей влияния препарата гумусовых кислот торфа на ремедиационный потенциал растений пшеницы (Triticum aestivum L.) при комплексном загрязнении тяжелыми металлами. Влияние полиметаллического загрязнения на ремедиационные свойства пшеницы изучали в модельных вегетационных экспериментах с использованием водной культуры. Растения выращивали на питательном растворе Хогланда. Комплексное действие тяжелых металлов создавали при использовании 10 мкмоль/л CdSO4, 25 и 50 мкмоль/л CuSO4, 500 и 1000 мкмоль/л Pb(NO3)2 в различных сочетаниях с добавлением препарата гумусовых кислот торфа (0,005%) или без него. Фиторемедиационную эффективность препарата гумусовых кислот определяли по выносу тяжелых металлов в фазу колошения пшеницы. В результате исследований установлено, что фиторемедиационная эффективность препарата гумусовых кислот определяется как усилением поглощения тяжелых металлов, так и снижением их токсического действия на растения. При комплексном загрязнении раствора тяжелыми металлами, которое характеризовалось высокой токсичностью, в вариантах с добавлением гумусовых кислот накопление растениями пшеницы меди и кадмия повысилось в 1,2-2,5 раза. Данные свидетельствуют о возможности использования препарата гумусовых кислот торфа в фиторемедиационных технологиях в качестве эффектора фитоэкстракции тяжелых металлов.

Об авторе

Т. А. Кирдей
Ивановская государственная сельскохозяйственная академия им. Д.К. Беляева
Россия

Кирдей Татьяна Александровна – кандидат биологических наук, доцент кафедры агрономии и агробизнеса.

153012, Иваново, ул. Советская, 45.



Список литературы

1. Lyanguzova I.V. Dynamic trends of heavy metal contents in plants and soil under different industrial air pollution regimes // Russian Journal of Ecology. 2017. Vol. 48. Issue 4. P. 311-320. https: //doi.org/10.1134/S1067413617040117

2. Гиниятуллин Р.Х., Бактыбаева З.Б. Особенности накопления Cd и Ni лиственницей Сукачева (Larix sukaczewii Dyl.) в условиях техногенеза // Вестник Томского государственного университета. Биология. 2020. N 51. C. 141-161. https://doi.org/10.17223/19988591/51/8

3. Кабата-Пендиас А., Пендиас Х. Микроэлементы в почвах и растениях / пер. с англ. Д.В. Гричука, Е.П. Янина; под ред. Ю.Е. Саета. М.: Мир, 1989. 439 с.

4. Prasad M.N.V. Phytoremediation of metal-polluted ecosystems: hype for commercialization // Russian Journal of Plant Physiology. 2003. Vol. 50. Issue 5. Р. 686-701. https://doi.org/10.1023/A:1025604627496

5. Baker A.J.M. Accumulators and excluders -strategies in the response of plants to heavy metals // Journal of Plant Nutrition. 1981. Vol. 3. Issue 1-4. P. 643-654. https://doi.org/10.1080/01904168109362867

6. Pilon-Smits E. Phytoremediation // Annual Review of Plant Biology. 2005. Vol. 56. P. 15-39. https://doi.org/10.1146/annurev.arplant.56.032604.144214

7. Prieto M.J., Acevedo SOA, Prieto G.F., Nallely T.G. Phytoremediation of soils contaminated with heavy metals // Biodiversity International Journal. 2018. Vol. 2. Issue 4. P. 362-376. https://doi.org/10.15406/bij.2018.02.00088

8. Yan A., Wang Y., Tan S.N., Mohd Yusof M.L., Ghosh S., Chen Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land // Frontiers in Plant Science. 2020. Vol. 11. Р. 359. https://doi.org/10.3389/fpls.2020.00359

9. Evangelou M.W.H., Robinson B.H., Gunthardt-Goerg M.S., Schulin R. Metal uptake and allocation in trees grown on contaminated land: implications for biomass production // International Journal of Phytoremediation. 2012. Vol. 15. Issue 1. P. 77-90. https://doi.org/10.1080/15226514.2012.670317

10. Salt D.E., Blaylock M., Kumar N.P., Dushenkov V., Ensley B.D., Chet I., Raskin I. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants // Biotechnology. 1995. Vol. 13. Issue 5. P. 468-475. https://doi.org/10.1038/nbt0595-468

11. Vamerali T., Bandiera M., Mosca G. Field crops for phytoremediation of metal-contaminated land. A review // Environmental Chemistry Letters. 2010. Vol. 8. Issue 1. P. 1-17. https://doi.org/10.1007/s10311-009-0268-0

12. Lee M., Yang M. Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater // Journal of Hazardous Materials. 2010. Vol. 173. Issue 1-3. P. 589-596. https://doi.org/10.1016/j.jhazmat.2009.08.127

13. Jensen J.K., Holm P.E., Nejrup J., Borggaard O.K. A laboratory assessment of potentials and limitations of using EDTA, rhamnolipids, and compost-derived humic substances (HS) in enhanced phytoextraction of copper and zinc polluted calcareous soils // Soil and Sediment Contamination: an International Journal. 2011. Vol. 20. Issue 7. P. 777-789. https://doi.org/10.1080/15320383.2011.609198

14. Halim M., Conte P., Piccolo A. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances // Chemosphere. 2003. Vol. 52. Issue 1. P. 265-275. https://doi.org/10.1016/S0045-6535(03)00185-1

15. Evangelou M.W.H., Daghan H., Schaeffer A. The influence of humic acids on the phytoextraction of cadmium from soil // Chemosphere. 2004. Vol. 57. Issue 3. P. 207-213. https://doi.org/10.1016/j.chemosphere.2004.06.017

16. Кирдей Т.А. Влияние гумата на фиторемедиационные свойства пшеницы при возрастающих концентрациях нитрата свинца // Известия вузов. Прикладная химия и биотехнология. 2017. Т. 7. N 4. С. 110-115. https://doi.org/10.21285/2227-2925-2017-7-4-110-115

17. Чураков А.А. Запасы торфа в России // Лесной вестник. 2003. N 3. С. 22-25.

18. Пат. № 2310633, Российская Федерация. Способ получения жидких торфяных гуматов / Ю.А. Калинников, И.Ю. Вашурина, Т.А. Кирдей; патентообладатель ООО «Научно-производственная фирма “Недра”»; заявл. 15.06.2006; опубл. 20.11.2007. Бюл. № 32. 4 с.

19. Hoaglond DR, Arnon DE. The water-culture method for growing plants without soil. California Agriculture Experimental Station. 1950. Available from: https://ia800306.us.archive.org/6/items/watercultureme3450hoag/watercultureme3450hoag.pdf [Accessed 25th Novemder 2020].


Рецензия

Для цитирования:


Кирдей Т.А. Влияние гумусовых кислот низинного торфа на ремедиационные свойства растений пшеницы при комплексном загрязнении тяжелыми металлами. Известия вузов. Прикладная химия и биотехнология. 2021;11(2):228-235. https://doi.org/10.21285/2227-2925-2021-11-2-228-235

For citation:


Kirdey T.A. Influence of humic acids in lowland peat on the remediation properties of wheat plants against heavy metal contamination. Proceedings of Universities. Applied Chemistry and Biotechnology. 2021;11(2):228-235. (In Russ.) https://doi.org/10.21285/2227-2925-2021-11-2-228-235

Просмотров: 453


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)